{ "cells": [ { "cell_type": "markdown", "id": "a1b69222-3851-4c8f-ad5f-eda29c6c562b", "metadata": {}, "source": [ "# Conditional Probability (Discrete)" ] }, { "cell_type": "code", "execution_count": 1, "id": "ba05e68d-03c8-478e-a9c2-b66c8d75c158", "metadata": {}, "outputs": [], "source": [ "# Import some helper functions (please ignore this!)\n", "from utils import * " ] }, { "cell_type": "markdown", "id": "9e7b000d-2aa4-423e-b049-0cb5827051bb", "metadata": {}, "source": [ "**Context:** You've already spent some time conducting a preliminary exploratory data analysis (EDA) of IHH's ER data. You noticed that considering variables separately can result in misleading information. As such, today you will continue your EDA, this time also considering the *relationship between variables*. For example, you may want to know:\n", "\n", "* Are there certain conditions that are more likely to occur on certain days?\n", "* What makes a patient likely to need hospitalization?\n", "\n", "**Challenge:** So far, however, we've only seen ways of characterizing the variability/stochasticity of a univariate random phenomenon independently of other variables. So how can we consider the relationship between variables? Answer: conditional probability. \n", "\n", "**Outline:** \n", "1. Introduce and practice the concepts, terminology, and notation behind discrete conditional probability distributions (leaving continuous distributions to a later time).\n", "2. Answer the above questions using this new toolset.\n", "\n", "Before getting started, let's load in our IHH ER data:" ] }, { "cell_type": "code", "execution_count": 2, "id": "24cc97e7-cb98-4f23-a388-3973fa3cde63", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Day-of-WeekConditionHospitalizedAntibioticsKnots
Patient ID
9394FridayAllergic ReactionNoNo0
898SundayAllergic ReactionYesYes0
2398SaturdayEntangled AntennasNoNo3
5906SaturdayAllergic ReactionNoNo0
2343MondayHigh FeverYesNo0
8225ThursdayHigh FeverYesNo0
5506TuesdayHigh FeverNoNo0
6451ThursdayAllergic ReactionNoNo0
2670SundayIntoxicationNoNo0
3497TuesdayAllergic ReactionNoNo0
1087MondayHigh FeverYesNo0
1819TuesdayHigh FeverYesNo0
2308TuesdayAllergic ReactionNoNo0
6084MondayHigh FeverNoNo0
3724TuesdayAllergic ReactionYesYes0
\n", "
" ], "text/plain": [ " Day-of-Week Condition Hospitalized Antibiotics Knots\n", "Patient ID \n", "9394 Friday Allergic Reaction No No 0\n", "898 Sunday Allergic Reaction Yes Yes 0\n", "2398 Saturday Entangled Antennas No No 3\n", "5906 Saturday Allergic Reaction No No 0\n", "2343 Monday High Fever Yes No 0\n", "8225 Thursday High Fever Yes No 0\n", "5506 Tuesday High Fever No No 0\n", "6451 Thursday Allergic Reaction No No 0\n", "2670 Sunday Intoxication No No 0\n", "3497 Tuesday Allergic Reaction No No 0\n", "1087 Monday High Fever Yes No 0\n", "1819 Tuesday High Fever Yes No 0\n", "2308 Tuesday Allergic Reaction No No 0\n", "6084 Monday High Fever No No 0\n", "3724 Tuesday Allergic Reaction Yes Yes 0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import a bunch of libraries we'll be using below\n", "import pandas as pd\n", "import matplotlib.pylab as plt\n", "import numpyro\n", "import numpyro.distributions as D\n", "import jax\n", "import jax.numpy as jnp\n", "\n", "# Load the data into a pandas dataframe\n", "csv_fname = 'data/IHH-ER.csv'\n", "data = pd.read_csv(csv_fname, index_col='Patient ID')\n", "\n", "# Print a random sample of patients, just to see what's in the data\n", "data.sample(15, random_state=0)" ] }, { "cell_type": "markdown", "id": "bf4f3873-14b9-4011-984e-9a449230cb81", "metadata": {}, "source": [ "## Terminology and Notation\n", "\n", "As with (non-conditional) discrete probability, the statistical language---terminology and notation---we introduce here will allow us to precisely specify to a computer how to model our data. In the future, we will translate statements in this language directly into code that a computer can run.\n", "\n", "**Concept.** Conditional probabilities allow us to ask questions of the form, \"given that $A$ is true, what's the probability of $B$?\". Although simple, this idea is actually quite powerful; all *predictive models* you may have heard of (e.g. regression, classification, etc.) are formulated using *conditional distributions*. To see what we mean, let's start with an example.\n", "\n", "**Example.** Suppose you're working at the IHH ER, and you want to *predict* what is the probability that the next patient comes in with `Condition == \"Intoxication\"`. Given previously collected data, you can estimate this probability by counting the number of patients for which `Condition == \"Intoxication\"` and dividing by the total number of patients:\n", "\\begin{align}\n", "\\text{Probability of intoxication} = \\frac{\\text{Number of patients with intoxication}}{\\text{Total number of patients}}\n", "\\end{align}\n", "\n", "We'll call this probability the \"naive predictor.\" Now, let's compute this naive predictor on our IHH ER data:" ] }, { "cell_type": "code", "execution_count": 3, "id": "847891ff-d424-4755-a966-203e2b733c47", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Portion with Intoxication (Naive Predictor) = 0.171\n" ] } ], "source": [ "num_intoxicated = len(data[data['Condition'] == 'Intoxication'])\n", "num_total = len(data)\n", "naive_probability_of_intoxication = num_intoxicated / float(num_total)\n", "\n", "print('Portion with Intoxication (Naive Predictor) =', round(naive_probability_of_intoxication, 3))" ] }, { "cell_type": "markdown", "id": "61fa7e31-d8b3-438c-9fe1-6cfc754ba5cc", "metadata": {}, "source": [ "However, you also know that even in far reaches of the outer universe, beings work Mondays through Fridays, taking Saturdays and Sundays off. Therefore, you suspect intoxication may be more likely to occur on weekends. You decide to check whether your intuition is true here. If it's true, will you improve your ability to predict how likely the next patient is to come with intoxication?\n", "\n", "We can modify the naive predictor above as follows to condition on the day of the week:\n", "\\begin{align}\n", "\\text{Probability of intoxication given day $d$} = \\frac{\\text{Number of patients with intoxication on day $d$}}{\\text{Total number of patients on day $d$}}\n", "\\end{align}" ] }, { "cell_type": "code", "execution_count": 4, "id": "12b07c7f-73c3-46b4-a08c-f16b643e30c4", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJkAAAPYCAYAAAB5aShsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1hT5/s/8HfYsgQBBy5w7y0OHODAvVon7l2rVlttrX7c1lGt1r0VtXXXLVonKuJAFDcVUVFQUMGB7HV+f/DL+SaQSUJQeb+ui+sKyXOec5/krNx5hkQQBAFEREREREREREQ6MMrvAIiIiIiIiIiI6MvHJBMREREREREREemMSSYiIiIiIiIiItIZk0xERERERERERKQzJpmIiIiIiIiIiEhnTDIREREREREREZHOmGQiIiIiIiIiIiKdMclEREREREREREQ6Y5KJiIiIiIiIiIh0xiQTERERERERERHpjEkmIiIiIiIiIiLSGZNMRERERERERESkMyaZiIiIiIiIiIhIZ0wyERERERERERGRzphkIiIiIiIiIiIinTHJREREREREREREOmOSiYiIiIiIiIiIdMYkExERERERERER6YxJJiIiIiIiIiIi0hmTTET/n4uLCyQSCSQSCcLDwxWW8fDwEMtcuHBBb+uePXu2WO/s2bP1Vu/X4MKFC+J74+Hhkd/hfJa+lP1Hk2NMW5psu6b7kLSMRCLRS2xfs9jYWMyZMweNGjWCvb09jI2Nxfdu27Zt+R1egbZt2zbxsxgyZEh+h2MQBXGbDYnnRiL943mLvmZMMhUgcXFx2Lt3L0aMGIE6deqgZMmSMDc3h42NDcqUKYM2bdpg6tSpuHr1an6HSpRnZBMOiv7MzMzg5OSEBg0aYNy4cbhy5Up+h0z0WXn69Clq166N2bNnIzAwEB8+fEBmZqZOdcrebLu4uOgnUKICKCEhAQcPHsS4cePQoEEDlClTBlZWVrCwsEDx4sVRu3ZtDBo0CKtWrcKLFy/yO9wCY8iQIWrvOypUqIDGjRtj9OjR2LhxIx49epTfYRNpRfbHRGU/OIWHh8vt/9r+6Pi5rEMbsj+Iavun7J5I9r5J0Z+5uTmKFi2Khg0b4vvvv8elS5d03g5tMMlUACQmJmLBggVwcXFB3759sWXLFty5cwevXr1Camoq4uPjERERgXPnzmHRokVo2rQpKleujN27d0MQhPwO/4vzpbQqIcXS0tIQExODmzdvYs2aNXB3d0eHDh0QHR2d36HRZyCvWjN+SUaPHo2XL18CAAoVKoQuXbrgu+++w9ixYzF27FhUrVo1nyPUjuyXP7bCyn/8dT93kpKSsHjxYri6uuLbb7/FmjVrcPPmTURERCAxMREpKSl4/fo17t69i7/++gs//PADypYtC3d3d/j6+uZ3+AWa9L7jyZMnuH79OjZu3IjRo0ejSpUqaNGiBfbu3ZvfIX4V8qI1tRRb3dPnJjU1FW/fvkVQUBDWrVuHli1bwtPTExEREQZZv4lB1kL55sWLF+jSpQvu3r0r93yZMmVQq1YtODk5ISMjA9HR0bhz5w5ev34NAAgNDYW3tzciIiLwyy+/5EfoRAYxduxYuf9TUlLw/PlzXL58GUlJSQCAf//9F61atcKVK1dgZ2eXD1ESfR6ioqJw9uxZAIC5uTnu3LmDihUr5nNURAXb8+fP0a1bN9y5c0fueScnJ9SrVw+Ojo6wtLRETEwMXr58iVu3biE9PR0AcOXKFXTu3BnLli3Djz/+mB/hFzhVqlRB69atxf8FQUBcXBw+fPiA0NBQPH78WPyR19/fH/7+/tixYwe2bt2KYsWK5VfYRKQHzs7O6NGjh8blHRwc1JaxsbHBoEGD5J5LTk7G8+fPERAQIH6fuXDhAlq1aoVr165pVK8umGT6ioWHh6NJkyZiCwyJRIJ+/fph2rRpqF69eo7ygiAgKCgIq1atws6dO5GZmYnExERDh/1Zy6uWC7Nnz2arp3yyevVqhc+/ffsWY8aMwYEDBwAAISEh+N///oc1a9YYMjxSQ5/HDltuqhccHCw+bt68ORNMn6EhQ4YUuBZABXGbpZ4+fYomTZrgzZs3ALLu9Xr27IkpU6agXr16CsdR+vTpE86dO4fVq1fj3LlzALK62SnDc6N+NWrUSOm9BwC8e/cO+/fvx59//il2mTtx4gQaN26MwMBAODk5GSpUItKzihUrqjz+c6NIkSJK64yNjcX333+Pffv2AQDCwsIwe/ZsrFq1Sq8xZMfucl+p1NRU9OrVS0wwWVhY4ODBg9i5c6fCBBOQdWPSsGFD7NixA3fu3EGNGjUMGTLRZ8XJyQl79uxB48aNxec2b96MT58+5WNURPnr/fv34uMSJUrkYyRElJSUhG+//VZMMFlaWuLQoUPYt28f6tevr3SgbhsbG3Tv3h1nz57F9evXUbNmTUOGTWoUKVIEo0ePxr179zB+/Hjx+fDwcPTo0UNshUZEpI6DgwN27dqFhg0bis/5+PggLS0tT9fLJNNXavHixQgKChL/3759O7p3767x8jVq1MC1a9fQtm3bPIiO6MtgYmKCKVOmiP+npqbC398/HyMiyl+yNyVGRryFIMpPixcvxu3bt8X/d+7ciW7dumlVh5ubG4KCgrTqvkGGYWpqipUrV+L7778XnwsICMCuXbvyMSoi+tIYGxtj3Lhx4v8JCQm4efNmnq6Td4hfoaSkJKxcuVL8/5tvvkHv3r21rsfKygru7u4qyzx//hwzZ85E48aNUaxYMZiZmaFYsWJo3LgxZs2apdHgYsoGyzt//jz69u2LcuXKwcLCAg4ODmjRogVWr16tVfY1JSUFq1atQvPmzeHk5IRChQqhfPny8Pb2hp+fn8b1AKoH/ZW+NmfOHPG5OXPmKBzxP3uzfm0HC09LS4OPjw+6d++OsmXLolChQrC1tUXlypUxfPhwnDlzRqPtUTQIYmRkJGbMmIHatWvDzs4OVlZWqFKlCsaPH4/nz59rVO/Hjx+xe/dujB49Go0aNYKjoyPMzMxga2uL8uXLo1+/fti3b5/OM1IZQtOmTeX+f/r0qdz/iqZ2vnPnDiZMmIAaNWqgSJEikEgkSpO8165dw7hx41C9enXY29vDwsICpUqVQvv27bF69WqVXRhUSUhIwJo1a9C8eXMUL14cFhYWKFu2LPr374+LFy9qXM/NmzexcOFCdO7cGeXKlYO1tbV4nDdt2hT/+9//dJqh6L///sPEiRNRrVo12NrawtbWFrVq1cL06dM1GmxdnwPtq5qmW/q87Hvn6emp8PiWDh7drVs38bmFCxdqHMesWbPE5b755hudtkkqPj4eK1euRLt27VCqVClYWFjA3t4eNWrUwLhx43D9+nWly8qeo4cOHSo+v337drXnNn3T5zlLWtf27dvF54YOHarwM1W1b+lyHfznn3/EdZiYmKidzTI1NVVsoSKRSNC5c+ccZXIzcPbTp08xe/ZstGjRAiVLloSFhQUsLS1Rrlw5dO/eHatWrRJbyyjy5s0b+Pj4YPDgwahbty6KFCkCU1NT2NnZoUqVKhg6dChOnTqlMgbpAOzq9jFFA+tqu82CIGD//v3o168fypcvD2tra1hbW4v3Bv/8849GXcQU3RO8e/cOv//+Oxo2bAhHR0cUKlQI5cqVw/Dhw3H//n21dWoqISFB7l6vX79+Wv2YKMvMzExpK3dA9bmxa9euuTrPLViwQFyuU6dOKstGRERg3rx5aN68OZydnWFubo4iRYqgbt26mDx5MkJDQ9WuT9EA/4mJiVi7di2aNWuGYsWKwdzcHKVLl0a/fv0QEBCg8bbktWXLlsHV1VX8f+HChSrvn0JCQvDnn3/im2++QeXKlWFjYwNTU1Nx5twff/wRDx8+VLnOCRMmiO/X6NGjNY7Vx8dHXK5evXoaL6dIZmYm/P39MXPmTHh5eaFMmTKwtLSEubk5SpQogVatWmH+/PmIiYlRWofsLGOy1wNXV1eF5xZth8WQ3oN4enqKz128eFGrWcKyO3ToELp06YIyZcqIM4R5eXnh77//1rrrakhICKZNmwY3Nzfx+uTk5IRGjRph5syZePXqlVb10ZerTp06cv/n+Wcv0Fdnx44dAgDx7/Lly3mynt9++02wsLCQW1f2PwsLC2HRokUq6/Hz8xPLt2zZUkhJSRFGjhypst569eoJb9++VRvjw4cPhcqVK6us67vvvhNSU1OFsmXLis89e/ZMYX0tW7YUy/j5+Sl9Td3f4MGD5ZadNWuW+NqsWbNUbtO1a9eE8uXLq11H27Zt1b5H2bf50KFDQuHChZXWWahQIeH48eMq6zxw4IBgbm6u0ftQu3Zt4enTpyrry75/6Eq2Pk1OgampqXLl58+fL/d69rpmzZolGBsb59jWbt26yS0XHx8v9OnTR+17VKJECeHEiRMqY8y+//z3339C1apVVdY7cuRIIT09XWW9DRs21OhzNDU1FX7//Xe172X2/W3jxo0q9xV7e3vhyJEjWm27IpruQ6r2C02PbQCCj4+PIAiCcOzYMfG5ihUrqn1/BEEQMjIyhDJlyojL+fr6arScKseOHROKFy+uNm5vb28hISEhx/LZjxltzm2a8vHxEesoW7as0nL6PGfJ1qXuT9m+pY/r4LBhw8Syrq6uwsePH5WWnTx5sli2WLFiwps3b1S+l+o+j+TkZGHs2LGCiYmJRsd5XFxcjjpWrFih8Jyn6K9Vq1ZCTEyMwlgGDx6s8eeR/TjWZptDQ0OFunXrql1H/fr1hSdPnqisK/s9weXLl4WSJUsqrdPY2FjYuHGjyjo1JbvNAITAwEC91KuIqnPj3r17xdeqV6+ucZ3VqlUTl9u1a5fCMhkZGcKMGTPUHmMmJibCtGnThMzMTKXrk92/fHx8hAcPHqi9Ts6cOVPj7VFHdv25OU8uXbpULrZbt24pLNerVy+NjiGJRCJMnDhR6X3AvXv3xLK2trYKrw2KuLu7i8utWbNG6+2USk1NVXksyf5ZWVkJf/31l8J6nj17pvF5RXoca0P2HkTdX/ZrW/bz1ocPH4SuXbuqrKN9+/ZCYmKi2riSk5OF0aNHqz03FypUSFi1apVW26yK7HVVei+UXfbPRNl3rs99HdqQ3U/08V1GEDS/b5IKDQ2Ve0927typlziU4cDfX6Hz58+Lj8uUKaO2NVJujBs3Tm4AZGtra3h6eqJ48eKIjo6Gn58f4uPjkZycjF9//RXR0dH4888/Nap71KhR2L59O4yMjNCoUSNUqVIFmZmZuHbtmjgA4q1btzBo0CCcOHFCaT3Pnz9H69atERUVJT5XvXp1cSDMW7du4f79+1i/fj0sLS1z+U78nx49eqBGjRoIDAzEjRs3AAANGzaEm5tbjrKy4/xo49KlS+jQoYM4ILtEIoGbmxuqVauG1NRUXLt2DU+ePAEAnDlzBu7u7rh8+bJGg0SePXsW3333HTIyMlCmTBk0adIEtra2ePbsGS5cuID09HQkJSWhd+/euH//vtyvarLevHmDlJQUAECpUqVQrVo1FC9eHJaWloiPj0dISAhu3boFQRBw584dtGjRArdv387zWQ5yS3YMGgAoXLiw0rJLliwRW7KVL18ebm5usLS0RHh4OExNTcVyiYmJaNWqFQIDA8XnnJ2d0bx5c1hbWyMsLAyXL19GRkYGoqKi0LVrV+zevRs9e/ZUG+/Hjx/RoUMHPHv2DObm5vDw8EDp0qURGxsLPz8/fPjwAQCwadMmJCcnY8eOHUrrkrZQMjc3R/Xq1VGhQgUULlwYgiAgKioK169fR0xMDNLS0sRuhZrORnnkyBFMnDgRAFCyZEk0a9YM1tbWCA0NRUBAADIzM/H+/Xv07NkTx44dQ7t27TSqN69IZyE8dOiQ+OtP9+7dUbJkyRxlq1atCgDo0KEDSpcujYiICDx+/BiXLl1CixYtVK7nzJkz4vsubdGmi71796J///7IyMgAkNVkulmzZqhQoQLi4+Ph7+8vbs+uXbvw7NkznD9/HhYWFmIdJUuWFLf/v//+EwcKzj5DEpD7c1tu6HrOGjx4MGJjY3Hu3Dn8999/AIDWrVujSpUqOdal6Dyur+vgypUr4e/vj8ePH+PZs2f4/vvv8ffffyvc3qVLlwKA2BpDlwGA4+Pj4eXlhatXr4rPWVpawt3dHaVLl4YgCHj58iVu3ryJ2NhYpKWlifuRrFevXonPlytXDlWrVoWTkxMsLCzw4cMH3Lt3Dw8ePACQdX/Spk0bXLt2Debm5nL1tGnTBtbW1mr3MQC5HnA+JCQELVu2xNu3b8XnatasiTp16kAikSA4OBj37t0DkNWKs2nTprh06RIqVaqktu779+9j6tSpiI+PR9GiRdG8eXM4ODjg5cuXOH/+PJKSkpCRkYHvvvsONWvW1PlYkW2J7erqKjfehiF17doVtra2iIuLw4MHD3D79u0cv5hnFxwcLLakkY4PlV1GRgb69OkjTr4BZJ2L3Nzc4OTkhPj4eFy/fh1PnjxBeno6FixYgLdv32Ljxo1qY3716hXatGmDqKgo2NnZiS1+Y2JicP78eXz8+BEAMHfuXFSrVg19+vTR/A3JI7169cKkSZPE//39/VG3bt0c5aTXDxMTE1SrVg0VK1aEnZ0djI2N8ebNG9y4cQMvX76EIAhYvnw5UlJSsHbt2hz11KhRA02aNMHVq1cRFxeHf/75J8fsVdk9evRIbAFWqFAh9O/fP9fbm5GRgZcvXwLIOrdWr14d5cqVg62tLdLS0hAZGYlr164hLi4OCQkJGDhwIExNTXN8Vra2tuL1a8eOHeK4moMGDYKNjU2O9Sq6pqvi5uaGsWPH4uXLlzh8+DAA5bOHqbrPTU9Px7fffotz587BzMwMTZs2Rfny5ZGcnAx/f3/xc/3333/x008/Yd26dUrrSkhIQLt27eRa45UvXx7169eHvb093r17h4CAALx69QpJSUkYP3484uLiMG3aNK22nb4s2Vsu5flMlXmawqJ8IdvKpVevXnqvX/ZXKwDCkCFDcvzy+vHjR2HAgAFy5Q4cOKCwPtlfyaWtGho2bCiEhITIlcvMzBSWL18uV+fFixeVxtm6dWuxXOHChYVjx47lKHPixAnB3t5eALJ+pYWajLeqlkxS2rRK0maZd+/eyf2qU7FiRSEoKChHub///lsoVKiQWK5Lly5K1yubqTc3Nxd/Dcr+a+D9+/fl1j106FCldR49elRYuHCh8PjxY6Vlnj59KrRr106sb/jw4UrL5ndLpoMHD8qVz96yRPY1ExMToXDhwsKhQ4dy1JOcnCw+HjNmjLiMsbGxsHz5ciEjI0OufGhoqFC/fn25XxKV7Zey+4+ZmZkAZLVki4qKkiuXmJgofP/993IxK/sFWRqnr6+v0l/N0tPTBR8fH8HKyko8hlS1TJPd38zMzAQjIyNh6dKlObb9wYMHQvXq1cWyxYsXF969e6d22/OyJZOUJucAZfENGjRIbXnZX6FnzJihtrwqYWFhgrW1tVifm5tbjuMyIyNDWLp0qWBkZCSWGz9+vNI6tWkxoo3ctGTS1zkrewsHTej7Onjjxg25a9Dff/8t93pMTIzg7Owsvv7DDz8ojU3Tz0i2JaWxsbEwZ84cIT4+Pke5jIwM4fz580K3bt2EDx8+5Hh9y5YtwqpVq4TIyEil67pz547QoEEDcX3z5s3TOX5tl0lJSRFq164tlitatKhw5syZHOVOnTolODo6iuXq1asnpKamKqxT9nxgbm4uGBsbC0uXLhXS0tLkyr148UKoUaOGWNbT01Oj7VLF1dVVrK9v374616eKunPj0KFDxdcnTZqktr6ffvpJ7ec1Y8YMuWvAgQMHFLZU2rdvn1xrxr179yqsT/Y4l95rTpkyJUcLndjYWKFVq1Zi2XLlyqlsIaUpXVsyCYIglChRQqyjX79+Csv8+uuvwr59+5S2iMzMzBSOHj0qODk5iXX5+/srLCt7XLVo0UJtfD///LNYfuDAgZpvmAIpKSnC0KFDBT8/P6XHX3JysrB48WKxJaadnZ3w6dMnpXVq0mMht3Jzryr7/kr3yQ4dOuQ4l6alpcm1YpVIJCrjHzRokFi2UqVKCu9V0tPThbVr14rrNTY2Fq5cuaLFFiv2ubQyYkumnKZOnSqWNzU1VXpfrS9MMn2FZJu9z549W691Z2RkyN3Y9OrVS+nFNzMzU+jWrZtYtnz58jm+TApCzi/9FStWVHmR6Nmzp1j2u+++U1jm9OnTcifj8+fPK63v0qVLgkQi0ehklJ9JppkzZ4pl7O3thRcvXiitL3tiRFkyTvYkKpFIhJMnTyqt8/jx42JZa2vrHDfR2kpNTRVq1aolAFndSZSd7PIzyZSeni40btxYLGtmZpaju4hsXUZGRioTn4KQ9cVf9gv96tWrlZZ99+6d4OLiIpZV9kU5e3PtOnXqCElJSUrrlf3i6+LiovC41MaePXvE+n755Rel5bJ3T1LVhSgqKkrui56yhMvnnmR68eKF+HlbWlqq7AoVExMjJgnV3URqQvZGs0KFCgoTBFLLli2T24+VJQs/pySTvs5Z2iaZ8uI6KAiCsHDhQrFc4cKF5T5/2Tpq1qyp8vjW5DM6c+aM3P6+e/dutdutqw8fPojdNkuUKKG0m05eJZm2bt0qd4OtrLuRIAhCYGCg3L3U9u3bFZbL3k1+w4YNSuu8d++eeK8hkUiEV69eabRtysjGN2fOHJ3qUkfdufH8+fPi687OziqvKRkZGXIJ07Nnz+Yo8+zZM7GbT5EiRYSwsDCV8cmuv2rVqgqPx+zdMadOnaq0vujoaPHHEwDCtWvXVK5fE/pIMnl4eIh1tGrVSqd4rl27JtbVu3dvhWUSEhLkEnihoaFK60tLSxOKFSum9r4zLyxatEhc79q1a5WW+5yTTACE5s2bK71OZWZmyg1hoOz+6dKlS3LXG3XDZsjG0L59e43iViU3CaBBgwYJY8eO1fjPxsbms1iHNmTvVZ2dnbWKRdn5R5sk08OHD+W2ydvbW+dtUodJpq/Mx48f5Q6q5cuX67X+kydPinWbmZnlaCmRXWRkpNyvs//++2+OMtm/9Cv7pVfqxIkTYtl69eopLNO7d2+5LwDqeHt7y8XwuSWZMjMz5cZUWbZsmdo6O3ToIJZX9iun7MVAVYsnRTHcvXtXo21T5ffffxfrO3r0qMIy+ZVkevv2rfDtt9/KlR0zZkyOcrKvK7tRkzVlyhSxfJ06ddT+QirbYsLc3FxhoiB7kuncuXMq63zz5o3cWEiKjkttpKeniy1mlB2TgiC/v7m6uqpNVK5cuVLuoqzovfrck0yCIAgdO3YUl1m/fr3Scn/++adYrm3bthrVrcz79+/lPuODBw+qLJ+RkSHXeuzXX39VWO5zSjLp65ylbZIpL66DgpD1GXh6eorl3N3dhfT0dGHdunXicxYWFsK9e/dUrk+Tz6h9+/ZimT59+qjdZn2RbcWp7PPIqyRTo0aNxDKqWoIpirVx48YKy8ieD2rWrKm2Tjc3N7XXPE1kv9dbsWKF2mV8fX3VfpmJjY1VuKy6c2NmZqZQqlQpsYyixJGUbIKzZMmSChNSEydO1Po+VrZ19M2bN3O8LnucOzk5qUzUCoL8feTKlSs1ikEVfSSZZJPNdevW1Tkm6ZhUDg4OSsvItn5Wdl0QBEE4dOiQWK5SpUo6x6aN169fi+v+5ptvlJb73JNMivZbWWvXrlW7nd27dxfLHD58WKM4qlSpIgBZyW9lY+ZpKjdJJl3+8nMd2tBm7C5N16/uvik5OVl49OiRsHjxYsHOzk4sW6VKFSE6OlrnbVKHYzJ9ZaR9jaWsra31Wr/seE8dO3ZE8eLFVZYvWbIk2rdvj2PHjgHIGkNA1dgqFhYW6NKli8o6ZfugS2cXyk52rAJ1fciBrLE5PucpYUNCQsSZtoyNjTXaphEjRuDkyZMAoNFsGb169VL5ukQiQe3atcU4wsPDUbNmTZXLfPjwAdeuXcODBw8QGxuL+Ph4uRlRpOOgAMDt27fVfvZ5QXZKTyBr9qbnz5/D398fSUlJ4vOVK1fGb7/9prKuvn37ql2f7DEkne1GlR49eqBIkSJ49+4dUlJScPXqVZXj9JQqVUpulhNFnJyc0LFjRxw6dAiA+uMSAO7evYvg4GCEh4cjLi5OHHdLSrod9+7dQ2Zmptrp7b29vWFiovoSNGDAAPz444/IyMjAq1ev8OjRI4Xj5XzuRo0aJY4ft2XLFqUz9WzZskV8PGLECJ3WeeXKFfEzcnR0VHtsGRkZYdiwYeKYH9rOvJkf8uKcpYm8ug4aGRlhx44dqF27tjhmxsiRI7Fnzx6xzOLFi1GjRg2d4k9JSZG7JowfP16n+mS9efMG165dQ0hICN6/f4+EhAS52ZCCgoLEx7dv39bL56GJT58+ya172LBhapcZMWKEOO7JjRs3kJCQACsrK6Xl1e2PQNb9i3QsPmX3L5rIfq+nKi6pwMBAuTHEFJk8eTKKFCmidTwSiQTe3t5YvHgxAGDnzp0Kx9KSvibVr18/hdcK2fE2vb29NYqhVatW4gyGly9fVjmzWZcuXeTGnVOkbt262LdvHwDdPit9kr2nz74PKBIaGoqgoCA8efIEHz9+REpKitzxKB17KjY2FhEREShdunSOOkaNGiWO2bR9+3b89ttvMDY2zlFO9vo1fPhwzTdKA5mZmbh58yZu376NyMhIxMXFKZ1l+vbt23pdt6GUK1dO7Wx86r7/pKeni7NL29raKpx9VBFPT0/8999/EAQBAQEB6Nq1q+aB02fh+fPnar9PGBkZoXv37lizZk3ej8cEgEmmr0z2Qezi4+P1Wn9wcLD4OPvU7sq4u7uLN9e3bt1SWbZy5cpyAyQrIjtwXlxcXI7XX758KTeopyaDazZu3BgSiUTrqUENRfZ9r1y5skaDZMsO+B4dHY1Xr17B2dlZaXlNbvbVvfdSkZGR+PXXX/HPP//kSEYoo2oK2ryk7qYbANq2bYtt27apvfmuX7++ytcFQZC7AdLkGDI1NYWbmxv+/fdfAFnHkKokk3RfVqdJkyZikkl2/8pu+/btWLBggUZTRANAWloaPn78CHt7e7XrV8fe3h6VK1cWB4gNDg7+IpNMnTt3hrOzM169eoUbN27g3r17OY63wMBAcXpzR0fHXE9FLiX7mbq5ualN6AHy54zg4GAIgqDRvpRf9HnO0kZeXgdLlSqFTZs24dtvvwWQNR24VIcOHfSSELp9+zaSk5MBZA303ahRI53rfPjwIaZMmYKTJ08qHBxcEUOe8+/evSvGZW1tjVq1aqldpk6dOrCyskJCQgIyMjJw584dlZ+3IffH7Pd6CQkJua5LXwYMGCAmmQ4cOIC1a9fmSOQkJSXh4MGD4v8DBw7MUU9sbKx4vTEzMxMn01BHep0AgIiICJVl8+vcoSvZxJKtra3Scr6+vpgxY4bKa3t2MTExCpNMtWvXhpubGwIDAxEVFYUTJ07k+NHi1atX4o+apqamGDx4sMbrVSU9PR0rV67En3/+icjISI2Wya97SV3pY5+8e/eueC4wNTXFhAkTNFq3dLIiQP2xkxeePXsGFxcXjcu7uLjg+fPnn906NNWyZUuNfvzXt65du2LLli2ws7MzyPqYZPrK2NrawsTEBOnp6QAgziSlL7LJm7Jly2q0jOxBre7kr2rmLinZJJR0O2XJxmhpaQlHR0e1ddra2qJw4cJ6f7/0JTfve7FixWBhYSF+mYiJiVGZZNL2vVf2K1JwcDBat26dY1Y2dTT5Vc4QTExMULhwYbi4uKBRo0bw9vbWeIZGdTM9ffz4Ue59y4tjqEyZMhrVKVtOdv+SEgQBw4cPl/uSq6lPnz6pTTJpE6f0y4OiOL8ExsbGGDZsmNgSbsuWLVi+fLlcGdlfgQcOHAgzMzOd1qnruTo1NRWfPn1S+UUmv+nrnKWtvL4OfvPNNxgxYgQ2b94sPle0aNFcHYuKvH79WnxcunRpjRKQqpw6dQrdunXT+AcFKUOe82U/s9KlS2uUPDUyMkLp0qXFFrf6vn/RZX/Mzb3e7NmzMXv2bLnnwsPDlc4Uq62aNWuiVq1auHv3LuLi4nDs2LEcrbuOHTsmfjmWls9Odkbg1NRUjX4Iyk7d/Ud+nTt0JW15BEDpj16zZ8/WODEnS9XxOGrUKLEF3pYtW3IkmbZv3y4mcTt37qyXVhIpKSno2rUrTp8+rdVyn8u9pLb0sU/Kzh4WGxubJ8cOfZ5sbGzkermkp6fj1atXCA4OFhO0hw8fxtOnT3Hu3DmNvhvrSnV/Bvoiyd70yv6yow+yLaM0aZ6dvZy6k78+fjWXjdHS0lLj5TTdnvyQm/c9e1lDvPcpKSn49ttvxYuUk5MTpk+fDj8/P0RERCAhIQGZmZkQssaDk/vSJNuNzpCksUj/0tLSEBMTg6CgIKxZs0bjBBOQNWWvKtlbFubFMaTpPq+uzk2bNsl9Pu3bt8f27dtx7949vH//Xmx2L/2TPe9o8lnqK84vxYgRI8RuIX///TdSU1PF1xITE+W6ROnaVQ7Q/VwNfP7vd361ssrr6yCQc2rhJk2a6K15u+z6de1S//btW/Tp00dMMJUtWxYLFy7E5cuX8erVKyQmJsqd82fNmiUua8hz/pdyDdWGbKJe3/d6uSXbMunvv//O8brsc4paMQHyiZTcUvQDpKzPuYWmKrJDDCjqpnvmzBm5BFOTJk2wceNGBAcHIyYmBsnJyXLX7ZYtW4plVR2Pffv2FVvP+fr6yiWqAWDr1q3iY31cvwBgzpw5YoJJIpGgT58+2LdvH0JCQvDx40ekpqbKbYvU59ojQR197JOGOHbo81SkSBGsXr1a/Fu/fj2OHj2KZ8+eYcuWLWKr0rt372o05Io+sCXTV6hZs2Z48uQJAOD69et6rVv2hlTT5tmy5bI38c4LsjEmJiZqvNzn0Nxcmdy879nLGuK9P3DgAJ49ewYgaxySGzduoESJEkrLf+5fYvUt+xc6dWN8yJaTUvc5arrPq6vzjz/+EB/PmTMHM2fOVFmftp+lvuL8UpQtWxZt27bFqVOnEBsbi8OHD6N3794AgP3794u/7jdp0gTVqlXTeX26nquBL/v9zkt5fR309/fHokWL5J47cuQIdu7cif79+2sRqWKy69e1S/2mTZvELza1a9fGpUuXVLZ+y69z/pdyDdVG8+bN8fTpUwAQW5nkN29vb0yZMgWZmZk4efIk3r17J7a4iY2NFbt9GxkZKR1rSfaaaGtrq5cvzl+D58+fyyV3FA0FsWTJEvHxsGHDsHnzZpXJC02PRysrK3h7e2PDhg1IT0/H9u3b8csvvwAALl68iLCwMABZ3X1VdefXVEpKClatWiX+v23bNpVfjAvavaQyssdOrVq1cOfOnXyMhj4HJiYmGDZsGMzNzTFgwAAAwMmTJ7F9+3a9dWtVhi2ZvkKtWrUSHz9//hxXrlzRW92y3YFevHih0TKyg9MZonmebIyJiYmIjY1Vu8ynT58+6xuZ3Lzvb968EbvKAYZ578+dOyc+njhxosoEE4A86+/8uSpcuLBcc+e8OIY0rVO23332OiMiIvD48WMAgJ2dHaZOnaqyrri4OK2bWOsjzi/NqFGjxMey3eP0OeC3lK7najMzs8/uS/XnIi+vgx8/fsTAgQPFrieyY5CNHTtWL+dM2RZREREROv1yLXvOnz59utrulfl1zpf9zCIjIzVq7ZCZmflZn39kJ3h49uzZZ5FocnZ2FuNKS0sTB84GgH379oldfDw9PVGyZEmFdcjun3FxcVr9WPg1279/v9z/LVq0kPs/IyMDFy9eBJCVxFu4cKHa1jGanr8A+euXbMsl2evX0KFD1U76oYnAwEAxAV69enW1LS8K2r2kMrLHjnTCCyIA6N+/v9yA7jNmzJD7jpgXmGT6CvXq1UvuZmjZsmV6q1t2ZgNNk1ey5dTNnKAPJUuWlLuhvHbtmtplrl27prcmtnnRDFv2ff/vv//w7t07tcsEBASIj4sXL65yPCZ9ke0PrskghpcuXcrLcD47EokEderUEf/X5BhKT0+XG5RR3TGkaevFq1evKq1T9nOsUqWK2sH4L1++rPXxo8lx+eHDB7nuAYY4f6ijy/HdtWtXsYvD2bNn8eLFC4SGhsLf3x9AVmsLaesmXcmeMwIDAzUajFl2f6xbt+4X26VEW9puZ15eB8eMGSN+YapWrRqCgoLEL+0fP37EgAEDNB5YW5k6deqITecTExN1avGszTk/IyND7rqkTF7sd7Vq1RJnxPr06RPu3bundpk7d+6ILZmMjY1Ru3Ztvceli549e8oNBJx9nLf8Iv21HJCfSU72sWyZ7EqUKCE3ALU+fyj9UqWkpMiNr1OjRo0cs0zGxMSI3bCLFi2KokWLqqzz4cOHWg2SXa9ePXFyk0ePHuHy5cv4+PEj/vnnHwBZx60mszZqIq/uJfPymvY5XC/r1KkDc3NzAFk/NEtbmBEBWbPTSq+DERERWL9+fZ6uj0mmr1ChQoXwww8/iP8fOHAABw4c0LqehISEHBd32VZSJ06cwJs3b1TWITvjRPbl85LsL3x//fWX2vI7duzQ27plZ1PR12CRVatWFb+cZmRkKBzrIDvZX5fUTWmvL7K/YKn79fHmzZtyyZOCQvYY2L59u9rkzOHDh8XWeBYWFmpnZYuIiFA7a0VMTIzcFNHZ9w9tPkcA4jTf2ti9e7faL8s7d+4Uy5QoUQKVK1fWej36psvxbWJigqFDhwLIaiXh4+Mj94tw3759dR4jR6pp06bizebbt2/h6+ursrw0HilDnas/B9p+pnl1Hfzrr7+we/duAFktyXbt2gUrKyvs2LFDHEj/8uXLmD9/vtoYVTE3N5c75levXp3rurQ5Vxw+fFijX9fz4hpqY2ODBg0aiP9v27ZN7TKy11A3N7fPbtxGKysrudkGd+/ejcOHD+dfQP/ft99+K45PGBAQgPDwcDx79ky8nyxUqJA4e6IyslOvr127Nu+C/UL89NNPcq0hp02bliOpIXssJiUlqa0zN9ft7K1xd+/eLa6rdevWWs3epYo255XMzExs3LhRo3rz4txiiLo1VahQIbnrC48dklW5cmX07dtX/H/JkiVaT9ihDSaZvlK//PKL3K+lAwcOFKdP1sT9+/fRuHHjHLM6eHl5iTORpKSkYOLEiUrrEAQB48ePF0+25cuXR5s2bbTYityT7XKyb98+lb9yBAQEYNeuXXpbt+wviy9fvtRLnRKJRO7iPnfuXJV1Hz16VO5L5XfffaeXONQpV66cXAzKJCYmym1PQTJy5EjxBurWrVsqb44+fPggjnsAAP369dNoBpLJkyervHBMnjxZbCYrHStIlqurq3gDe//+fXHcD0X27t2L48ePq40puydPnuDPP/9U+vrr168xd+5c8f/hw4d/Fr8U6np8jxgxQtwOHx8fbN++Xe41fbGzs0OfPn3E/3/++WeV41asXr1abN1hZGRUoI5PbT/TvLgOPnv2DGPHjhX/X7BggdhyplSpUnLniXnz5mnUElCVn376SXy8Z88euYHntaHpOf/t27f48ccfNaozL66hADB69Gjx8Zo1a3D37l2lZW/evIkNGzaI/xvqGqqtKVOmyLWs69+/P44cOZKPEWUl9Lp16wYga//ftWsXdu3aJf6g0q1bN7VdcSdNmiT+4n7o0CGNkoJSX1M3obS0NEycOFEuWeDh4aGwxauDg4N4f/Dx40ex65wiAQEBuUoyeXt7iz+E7N+/X651lT6vX7LnlYsXL6oczmLJkiUajz2UV+eWvK5bG1OmTBEfr1q1CmfPntV42a/p2CHFpk+fLn4HefXqldwstvrGJNNXytzcHPv37xebyyYlJaF79+4YNGgQQkJCFC4jCAJu3LiBwYMHo3bt2rh//36OMkZGRnIDku7evRsjR47MMXjop0+fMHToUBw8eFB8bvHixXrpq62Jtm3bir/UCoKA7t27y7XckDp9+jS6du2KzMxMtV2CNCXbhPn06dN6G+tp4sSJ4hgGsbGxaN26NW7fvp2j3J49e9CvXz/x/y5duuTou59XZKe13b59O5YuXZqjtUpYWBi8vLxw69atz+6XYUMoX7683JedcePGYc2aNTlmdpG+T9KB1G1tbdUOvg1ktYC4efMmunfvnmMGmOTkZPzwww9yiY358+fnOC4dHR3FQUUzMzPRs2dPPHr0SK5MZmYm1qxZg4EDB8LY2FjuVzxNmJmZYcqUKVixYkWObQ8JCUHbtm3FFiLFihXT+AtqXpM9vv/55x+tuwmWK1cOrVu3BpA1joT0pq5mzZpo1KiR/gIFMHPmTPELQWhoKNq1a5cjYZiZmYkVK1bIJR3Gjh2rt1+kvwSyn+mRI0fkZv5TRN/XwYyMDPTv319MArZp00bu8wCyukZJW8Glp6djwIABOg1226ZNG7np5QcMGIC5c+cqbDWQmZkJPz8/9OjRI8f1TPacv3DhQoWtbG/duoWWLVsiIiJCo3O+7Odx/fp1rcaNUaV///5i4i41NRXt2rWDn59fjnJnz55Fhw4dxLGq6tWrJ3dN/ZxYWFjgwIED4r1eYmIievTogT59+uDWrVtKz0+ZmZm4cOFCniWTZbvD/f333xp3lZMqX748pk+fLv4/bNgwTJ48WWn3rvT0dJw+fRoDBw6US7p9qd69e4eNGzeiVq1aWLFihfh8xYoVceDAATEBJ8vIyAgdO3YU/x8yZIjCcbr27duHjh07IiMjQ+t7MGtra7ElREJCgvg9wcHBAT169NCqLlXq1q0r3u9+/PgRvXr1kutCB2Ql+GfOnIlff/1V4+2QPbdkH+NKV66uruKsuc+fP8+3lvotW7YUB3ROT09Hp06dsHDhQqWTPCQnJ+Pw4cPo1q2b3Jg99HWqUqWKXJL6999/V3vPk1ucXe4rVq5cOVy/fh1dunTB/fv3kZmZib/++gt//fUXXFxcUKtWLTg6OiIjIwPR0dG4fft2ji+lin5t6t27Ny5duiT+grF582bs3bsXnp6eKFasGN68eYNz587JndAmTpyIb775Jm83OJstW7agSZMmeP36Nd6/f49OnTqhRo0aqFevHiQSCYKDg8VfMn/66SccOHBAL4MHurm5oXTp0oiIiEBUVBSqVKkCLy8vODo6ii0YGjZsKNfKQBP29vbYtWsXOnTogMTERDx69Aj16tVDo0aNUK1aNaSmpuLatWtyfbArVqwo1+Q/r3l5eaFFixa4dOkSBEHA5MmTsWbNGtSrVw+FCxfG48ePceXKFWRkZKBkyZKYMGGCXEudguKPP/5AUFAQbty4gfT0dIwbNw6LFi1Cs2bNYG1tjSdPnuDSpUtigs7ExARbtmzR6Iv/mDFjcOTIEfz7779wcXGBh4cHSpcujdjYWPj5+ckN0O3t7a10tqp58+bBy8sLmZmZCA4ORs2aNeHu7o5y5cohPj4e/v7+iIqKApCVqNq4caNWx8/ixYsxceJETJw4EX/88Ye47aGhobh8+bKYeDIxMcHWrVvFGYry2zfffINp06ZBEAT4+vqiVq1aaNq0qdy5sm/fvnJdc7IbNWpUjl8Xhw8frvdYy5cvj82bN6N///7IyMjA1atXUblyZTRv3hzly5cXP0fZX10bN26MxYsX6z2Wz1mHDh1QqFAhJCUl4fbt26hatSo8PDxgZ2cnnrO9vLzg5eUlLqPP6+C8efPEMdIcHBywfft2ha32Vq5cCX9/f4SFheHJkycYP368Vi08stu8eTOeP38ujtk1a9YsLF68GO7u7ihdujQEQcDLly8RFBQkdtnNnrQYPHgwli5ditDQUKSkpGDgwIFiKywLCwvcv38fQUFBALJmn2vXrp3a/at48eJo2rQprly5guTkZNSuXRvt27dHiRIlxARd+fLlMWbMGK2218zMDLt370bLli3x9u1bREdHo1WrVqhdu7Y4Vt7t27flWkUULVoUu3fv1tuPUHnB1dUVgYGB6NatG+7cuQNBELBv3z7s27cPTk5OqF+/PhwdHWFtbY2EhARERkbi7t27OSZF8fT0lGuNoYt27drByckJb9++lfth08nJCe3atdOojlmzZiE8PFzsVr506VKsWrUKDRo0QPny5WFpaYm4uDiEh4fj7t274vhZ+tqGvHT9+nWMGzdO/F8QBHz69AkfPnzA48eP8ejRoxzHWrdu3bBp0yaV18Lp06fj8OHDSEpKQnh4OBo3bowmTZqgUqVKSE1NxdWrV8UfrkaOHInQ0FCVLZ4UGTVqVI7WDwMHDoSZmZlW9ahiZGSEefPmiWM8nTlzBpUqVULTpk1RtmxZxMbG4sKFC+L9zMaNGzWaefPbb78VWyiuXbsWN2/eRL169cTkEJB1D1W+fHmtYzY2Nkb37t3FnhEeHh5o3749ypQpIyYFixQpgmnTpmldt7Y2bNiAqKgonD59GqmpqZg2bRp+++03NGrUCGXKlIG5uTk+fPiAJ0+e4P79+2LLd+mYW5S3Hj9+LHf8a2Lq1KlKJ0vQ1owZM7Bv3z5xcott27blzQ8OAn31Pn36JMydO1ews7MTAGj0V7t2beHQoUMq6503b55gbm6ush4LCwthwYIFKuvx8/MTy7ds2VKjbZJdhyr3798XKlasqDLGkSNHCqmpqULZsmXF5549e6awvpYtW4pl/Pz8lK732LFjgpmZmdJ1Dh48WK78rFmzxNdmzZqlcpuuXr0qlCtXTu1n2KZNG+HNmzcq69Jkm2UNHjxYLO/j46OwTHR0tFCvXj2VsVWrVk148OCB4OPjo/Q9kcrN/qGKbH36OAXmtq5Pnz4JvXv3Vvs5lihRQjhx4oTKurLvPyEhIULlypVV1jts2DAhLS1NZb3r1q0TTExMlNZhZGQkzJw5U8jMzNRoX8peZt26dSqPEzs7O+HgwYNabbsimu5Dmn6WU6dOVfneKjs2pFJTU4WiRYuK5c3NzYXY2FiVy+ji2LFjQrFixdTua/369RMSEhJU1qXJMZsbsvWWLVtWabm8OGcJQta+LpFIlL43yvYtXa+DAQEBgrGxsVhW3f5+/fp1uWNy3759Ocpo8xklJiYKI0eOlItB1XbExcXlqOPRo0dqr0nu7u5CZGSkxte6GzduCDY2Nkrry34ca7PNjx49EurWrat2e+vVqyeEhYWprEvTewIpba712kpISBAWLlwoODo6qt026Z9EIhGaN28uHD58WGXdmp4bZY0bNy7H+saPH6/1dq1cuVKwt7fXeHu6du2qsB5NzwVS+j7Xya5fm7+WLVsK+/fv13g9hw8fFiwtLVXWOWrUKCE5OVnr/VeqTp06cvXdv38/F++IetOmTVN7Tlq/fr0gCJrvo/369VNZpzbvQ3bh4eFC8eLFldad/dqm7T727NkzpXVll56eLsyYMUPtviD9MzU1FcaOHZvrbZeSvUYrO85ktwPQ7Fr+Oa5DG7Ln/tz8BQcH56hT0/smRXr16iUu6+rqqvb7QG6wu1wBYG1tjRkzZiA8PBy7du3C0KFDUatWLRQvXhxmZmawtrZGmTJl4OXlhRkzZuDmzZu4ffs2unfvrrLe6dOn49GjR5g+fToaNmwIR0dHmJiYwNHREW5ubpgxYwYePXqkdvrzvFS9enXcvXsXK1asQNOmTVGkSBFYWFjA1dUVvXv3xunTp7Fx40a9/0rZuXNnBAUFYfTo0ahevTpsbGz0Np5M48aNERISgi1btqBLly4oXbo0zM3NYW1tjQoVKmDIkCE4deoUzpw5IzfLnqEUK1YMV65cwerVq9GsWTPY2dnBzMwMpUqVQuvWrbFx40bcuHED1apVM3hsnxNra2vs3bsXV65cwZgxY1C1alUULlwYZmZmcHZ2hpeXF1auXInHjx+jQ4cOWtVdpUoV3LhxA8uXL0fTpk1RtGhRmJmZoXTp0ujbty/Onz+PLVu2wMREdWPW7777Drdu3cLQoUPh4uICMzMzFC5cGNWqVcO4ceMQFBSEOXPm5HrfltY/btw4VKlSBdbW1rC2tkaNGjUwdepUPHz4UK9N8PVlwYIF8PX1Rc+ePeWayGvK1NRUbmDbHj165GlLrc6dOyMsLAwrVqxA27Zt4ezsLH6WVatWxffff49r165h165dWm/L1+K7776Dv78/Bg4ciEqVKsHKykqj/VqX62BcXJzcbHEjRoxQu7+7ublh9uzZ4v+jR49GRESEdhsro1ChQti4cSPu37+PqVOnws3NDUWLFoWJiQksLS1Rvnx59OjRA2vXrsXLly8Vtm6uVKkSgoODsWDBAjRo0AA2NjYwNzdH2bJl0blzZ+zatQsXL17U6lfYBg0a4O7du/jpp59Qt25dFC5cWGEXodyoVKkSgoKCsHfvXvTu3RsuLi6wtLSEpaUlXFxc0KdPH+zfvx9BQUG5atGQXywtLfHrr78iPDwc//zzD8aMGYN69eqhVKlSKFSoEMzNzVGsWDHUqFEDAwYMwIoVKxAWFoZLly6JYyjp08CBA3M8p0lXuezGjx+P58+fY82aNejevTtcXV1hbW0NExMT2Nvbo2bNmujbty/Wr1+P58+f5/uYVLlhamqKIkWKwNXVFW5ubhg5ciQ2bNiA0NBQXLhwAT179tS4rm7duuH+/fsYN24cKlWqBAsLC1hbW6NSpUoYOnQoLl68iA0bNogTQ+SGbIvMxo0bo3r16rmuS5X58+fD398fffr0QcmSJWFmZgYHBwfUrl0bU6ZMwd27d+WGH9DEzp07sXPnTnTu3BmlSpXSuqu/KmXLlsWdO3cwY8YMNGrUCPb29mrvs/KKsbEx5s6di/DwcPzxxx9iqypLS0uYmprCwcEB9erVw+DBg7Ft2za8fPlSp0kg6MsyY8YM8R7n2bNnGk2SpS2JIOhp3nYiIiJSSxAElC9fXuy2cPbsWXGcJiIios+Zp6enOIvt5s2b86S7NxF92ZhkIiIiMqDz58+LSaVy5cohLCzss5g5j4iISJUnT56gYsWKEAQBNjY2ePXqlTjBBBGRFLvLERERGdDKlSvFx6NHj2aCiYiIvgirVq0SByUfMGAAE0xEpBBbMhERERnI0aNHxfFPbGxsEB4e/tnMnEdERKRMUFAQ3N3dkZqaCiMjIzx48ABVqlTJ77CI6DOUP6ORERERFQBhYWFYvXo1MjIyEBoaijNnzoiv/fzzz0wwERHRZ+ndu3eYO3cuMjMz8fz5c5w8eRJpaWkAgCFDhjDBRERKsSUTERFRHrlw4QI8PT1zPO/u7o7z58/DzMwsH6IiIiJSLTw8HK6urjmer1SpEq5duwZ7e/t8iIqIvgQck4mIiMgAzMzMULlyZcycORNnzpxhgomIiL4IJiYmcHFxwYQJE3D16lUmmIhIJbZkIiIiIiIiIiIinbElExERERERERER6YxJJiIiIiIiIiIi0hmTTEREREREREREpDMmmYiIiIiIiIiISGdMMhERERERERERkc6YZCIiIiIiIiIiIp2Z5HcA9OVITk7GvXv3AABOTk4wMeHuQ0RERERERKRv6enpePv2LQCgZs2asLCwyOeINMMsAWns3r17cHNzy+8wiIiIiIiIiAqMwMBANGzYML/D0Ai7yxERERERERERkc7Ykok05uTkJD4ODAxEiRIl8jEaIiIiIiIioq9TVFSU2JNI9rv4545JJtKY7BhMJUqUQKlSpfIxGiIiIiIiIqKv35c0HjK7yxERERERERERkc6YZCIiIiIiIiIiIp0xyURERERERERERDpjkomIiIiIiIiIiHTGJBMREREREREREemMSSYiIiIiIiIiItIZk0xERERERERERKQzJpmIiIiIiIiIiEhnTDIREREREREREZHOmGQiIiIiIiIiIiKdmeR3AFSwCIKAhIQExMXFITk5GRkZGfkdEhERGYCRkRHMzMxgZWUFa2trmJmZ5XdIRERERKRnTDKRwWRmZuLFixdISkrK71CIiCgfpKamIj4+Hq9fv4aTkxMcHBwgkUjyOywiIiIi0hMmmcggBEHIkWCSSCQwNjbOx6iIiMhQMjIyIAiC+P/bt2+RmpoKZ2fnfIyKiIiIiPSJSSYyiISEBDHBZGxsjOLFi8Pa2hpGRhwWjIioIBAEASkpKYiLi0NsbCwA4OPHj3BwcIC5uXk+R0dERERE+sBv+GQQcXFx4uPixYvD1taWCSYiogJEIpHAwsICRYsWRdGiRcXn379/n49REREREZE+8Vs+GURycjKArC8Z1tbW+RwNERHlJzs7O/FxYmJi/gVCRERERHrFJBMZhHQWOWNjY7ZgIiIq4IyNjcUx+TjLKBEREdHXg9/2iYiIyOA4qxwRERHR14dJJiIiIiIiIiIi0hmTTEREREREREREpDMmmYiIiIiIiIiISGdMMhERERERERERkc6YZCIiIiIiIiIiIp0xyUREBjFkyBBIJBK4uLjkdyikwOzZsyGRSJTO+OXi4gKJRIIhQ4YYNjAiIiIiIvpiMMlE9JW5cOGCmCyQSCTo06eP2mWkCSBOKa6ebDJG9s/IyAi2traoWrUqhg4dikuXLuV3qERERERERAbFJBPRV27//v24d+9efofx1RMEAZ8+fcJ///2Hbdu2oWXLlhg6dCgyMjLyO7TPHltJERERERF9HUzyOwAiyluCIGDWrFk4ePBgvsaxbds2bNu2LV9j0LetW7eiYcOGALLe59jYWJw7dw7Lly9HfHw8tm3bBicnJyxevDifI9VdeHh4fodARERERESfObZkIvqKOTo6AgAOHTqE4ODgfI7m6+Pq6ooaNWqgRo0aqFmzJjw8PDBv3jz4+fnBzMwMALBixQrExMTkc6RERERERER5j0kmoq/YDz/8AHNzcwDAzJkz8zmagqNBgwbiWFipqanw8/PL54iIiIiIiIjyHpNMRF+x0qVLY9SoUQCA48ePIzAwMFf1ZGZm4vz585g8eTLc3d3h6OgIU1NT2NnZoU6dOpg8eTJevHihsg5ls8vNnTtXHDz78ePHamNp164dJBIJSpQooXS8o8OHD6NXr14oU6YMLCwsYGdnhwYNGmDOnDl4//69xtutCzc3N/Hx8+fPxcfZZ3H7+PEj5s2bh7p168LOzg4SiURht0JdtykyMhJjx45FuXLlYGFhAWdnZ3Tt2hVnz57VaHs0HTcpPDwcU6ZMQf369eHg4ABTU1M4OjqiefPmmD17Np4+fSqW9fDwgEQiEd+f7du35xhQ3cPDQ+F6Ll++jIEDB8LFxUV8P+rWrYvp06fj7du3SuOTHRj/woULyMzMxNatW+Hp6YlixYrByMiIY0MREREREeUSx2Qi+spNnToVmzdvRlJSEmbMmIFTp05pXcfcuXMxZ86cHM9//PgRd+7cwZ07d7Bu3Tr8/fff6NGjh1Z1e3t7Y9asWQCAXbt2iY8Vef36Nc6dOwcA6Nu3L4yNjeVef//+PXr27Inz58/LPZ+SkoKbN2/i5s2bWLt2LY4cOYLGjRtrFae2TE1NxcfKkmGPHz+Gl5eXyvGO9LFN/v7+6Ny5M+Li4sTnoqKicOzYMRw7dgyzZ8/WfMNU+OOPPzBt2jSkpaXJPR8bG4vLly/j8uXLuHDhAi5cuJDrdWRmZuKHH37AmjVr5J5PSUnB7du3cfv2baxevRr79+9H27ZtVdaVnJyMdu3aaZxoIyIiIiIi1Zhkos9HZiYQG5vfURiOgwNglPeNCUuUKIExY8Zg2bJlOH36NC5fvoxmzZppVUd6ejpKlCiBHj16oEmTJmJrmIiICFy5cgVr165FfHw8vL29cevWLVStWlXjuitUqIBGjRrh+vXrapNMe/fuFRM2/fv3l3stJSUFbdq0wa1bt2BsbAxvb2907NgRrq6uSEtLw6VLl7Bs2TK8efMGHTt2RHBwMMqWLavV+6AN2Rn9nJ2dFZbp2bMnXr58ifHjx6Nr166wt7fH48ePxbj0sU0vXrwQE0xGRkYYNWoUevbsicKFC+Pu3btYtGgRZs+ejQYNGui0vfPmzRO7ZNrZ2eH777+Hp6cnHBwc8OHDB9y6dQsHDx4UW3ABgI+PDxISEtCuXTu8evUK3bp1w2+//SZXr5WVldz/v/76q5hgcnV1xZQpU1CvXj0kJCTg6NGjWL16NT5+/IjOnTsjMDAQtWvXVhrzlClTcPfuXXTt2hVDhgxB2bJl8fr1a7lkHBERERERaY5JJvp8xMYCRYvmdxSG8+YN4ORkkFVNmTIFGzZsQEJCAmbOnJmjVYw6I0aMwKxZs+Ra5wBAvXr10K1bN4wfPx6NGzfGy5cvsWDBAvz1119a1d+/f39cv34doaGhCAoKUprw2LVrFwCgUqVKOcrMnTsXt27dgp2dHc6ePYv69evLvd6sWTP0798fTZo0QVRUFKZNm4adO3dqFaemXr58KdYtkUjQokULheXu37+PkydPwsvLS3xONm59bNOkSZPEpMnff/+Nfv36ia81aNAAvXr1QvPmzREUFJTr7Q0ODhZbQ1WqVAnnzp1DqVKl5Mp4enpi0qRJiIiIEJ9zdXUF8H+tvuzs7FCjRg2l67l37x6WLl0KAKhRowb8/f1hZ2cnvu7h4QEvLy906tQJqampGDVqFK5fv660vrt372L69OmYN2+eVttLREREJMvlV9/8DoE0FL6oU36H8NXjmExEBUDRokUxbtw4AICfn5/WA1G7uLjkSDDJKlWqFH7++WcAwNGjRyEIglb19+nTR+z6pizx8+TJEzFhkL0VU3x8vNi6Zd68eTmSMVJly5bFjBkzAAD79+9HQkKCVnGqIggCYmNjsW/fPjRr1gwfPnwAkLVtylpMDRkyRC7BJEsf2xQdHY1Dhw4BADp37iyXYJKysbHBxo0bNdtIJZYsWYLMzExIJBLs2bMnR4JJVunSpXO9nnXr1iEzMxMAsHnzZrkEk1T79u0xbNgwAEBgYCBu3LihtL5KlSrprasgERERERExyURUYPz888+wsbEBADEpkVtxcXF49uwZHjx4gPv37+P+/fuwtLSUe00bRYsWFcfP2bt3r5hIkCVtxQRkjeMk6+LFi/j48SOArC5oqkhbFaWlpeHmzZtaxZmdp6enOIi0kZERHB0d0adPH3GMpYYNG2L9+vVKl8+eLJOlj23y8/MTuxcOHTpU6fJubm6oXr26ynUok5mZiZMnTwLIaklUt27dXNWjCenYSdWrV0ejRo2Ulhs5cmSOZRSRTW4SEREREZHumGQiKiAcHBwwceJEAEBAQIDWA4A/f/4c48ePh4uLCwoXLoxy5cqhRo0aqFmzJmrWrCnOYgcAMTExWscnTbhERUUp7M4nTTI1atQIFSpUkHtNtqtXiRIlcsxQJvsn2x0rOjpa6zjVMTY2Rr169bBixQoEBASgcOHCSsvWqlVL6Wv62CbZcaEaNmyoMm7Z2fC08ezZM7HVVvPmzXNVhyZSUlLE2QdVJZgAoG7dumLLu/v37ystp+r9JyIiIiIi7XFMJvp8ODhkjVNUUDg4GHyVP/30E1atWoUPHz5g1qxZaNeunUbLnTx5Ej179kRiYqJG5ZOSkrSOrXv37rC0tERiYiJ27tyJNm3aiK/dunUL//33HwDFrX/e5HK/0XR7lNm6dauYvJFIJLCyskKxYsVQqFAhjZa3t7dX+po+tundu3fi46JqxjsrVqxYrtYnm1AsUaJErurQxPv378XH6rbF1NQUDg4OiI6OlnsPslP1/hMRERERkfaYZKLPh5GRwQbCLqjs7Ozw008/YebMmbh+/TqOHz+Ozp07q1wmJiYG3t7eSExMhLW1NSZPnox27dqhfPnyKFy4MMzMzAAA58+fR+vWrQFA6zGZAMDa2hrdunXD7t27cfDgQaxbtw4WFhYA/q8Vk7GxMfr06ZNjWWmXMCArIaVq/ChZqsYO0oSrq6vKgarVUdVVS9/bJDur25dOX9vCrnJERERERPrFJBNRATNx4kSsWLECsbGxmDVrltok0z///CN2hzp06JBcCyNZqlqMaKp///7YvXs34uLicPz4cfTs2ROZmZnYs2cPAKBt27YKW7E4yLQKc3Jy0jl59DnQxzbJttR5/fq1ykG3X79+rXX9AODo6Cg+joqKylUdmsi+Laqkp6cjNjYWAFCkSJE8i4mIiIiIiORxTCaiAsbGxkacCe7WrVvi7GPKPHjwAEDWl3VlCSZAfgyh3GrXrp2YtJC2Xrp48SJevnwJQPlA2bKDTQcEBOgcx+dAH9tUs2ZN8bGqWdY0eV0ZV1dXcZa3S5cu5aoOTVommZubo2LFigAgzjKoTHBwMNLS0gBAp5ZmRERERESkHSaZiAqgcePGiS2CZs2apbJ7W3p6OgAgOTlZ4axvQNY4QH/99ZfOcZmYmKB3794AgBMnTuDDhw9issnS0hLdu3dXuFybNm3E2e1WrlyZq+56nxt9bJOnp6fYJWz79u1Ky924cUPlANmqGBkZoVOnTgCyEoLBwcFa1yHtFpmSkqKynDTJ+eDBAwQGBiott3nz5hzLEBERERFR3mOSiagAsrKywpQpUwBkzUB24sQJpWWlrUcSExOxb9++HK9nZGRgxIgRePXqlV5ik7ZWSklJwa5du3DgwAEAQLdu3WBtba1wGTs7O4wbNw4AcOXKFfz4449KE2JAVncr2UTE50gf21SiRAl069YNAHD06FGFn198fDxGjx6tU6yTJ0+GkZERBEFA3759ERkZqbSsotekA4Y/efJE5XrGjBkDI6Osy9aoUaMQFxeXo8zp06exZcsWAFkz5qmbVY+IiIiIiPSHSSaiAmrMmDHil3vZGcKy6927N8zNzQEAQ4cOxa+//opz584hKCgI27dvR6NGjbB79264u7vrJa6mTZvC1dUVAPC///1PnFVMWVc5qblz54pT269YsQL16tXDmjVrEBAQgNu3b8PPzw+rV69G9+7dUaZMGaxfv14v8eYlfWzT0qVLYWNjAwDw9vbG2LFj4efnh5s3b8LHxwf169dHcHAwGjRokOs469Spgzlz5gAAQkNDUbNmTUyfPh3nzp3D7du3ceHCBSxfvhwtWrTAwIEDcyzftGlTAFktqhYtWoQ7d+4gLCwMYWFhYldJIKv736RJkwAAd+7cQb169bBp0yYEBQXh4sWLmDx5Mjp37oyMjAyYmZlhw4YNud4mIiIiIiLSHgf+JiqgChUqhGnTpmH8+PEqy5UqVQrr1q3DiBEjkJycjN9//x2///67XJk+ffpg5MiReuua5O3tjfnz54sDjjs6OqJdu3YqlzE3N8eZM2cwZMgQHDx4EHfu3BFbAilia2url1jzkj62ycXFBUePHkXXrl3x6dMnrF27FmvXrpUrM3PmTEgkEp3G1Zo+fTqMjIwwa9YsfPjwAfPnz8f8+fNzlGvZsmWO58aMGYN169bh3bt3mDp1KqZOnSpX/sKFC+L/ixYtQkJCAtauXYsnT55g1KhROeorXLgw9u3bhzp16uR6e4iIiIiISHtMMhEVYCNHjsTixYsRERGhstzQoUNRuXJlLFmyBAEBAfjw4QMcHR1Ru3ZtDB06FL1795ZLBOiqf//+cgmK3r17w8RE/enKxsYGBw4cwOXLl7F9+3b4+/vj1atXSEpKgq2tLcqXLw83Nzd06tQJXl5eeos3L+ljmzw8PPDgwQMsXLgQJ06cQFRUFOzt7dGgQQOMHz8e7dq1w+zZs3WOddq0aejVqxfWrl2Ls2fP4sWLF0hMTIS9vT2qVauGtm3bYtCgQTmWK1myJAIDA7Fw4UJcvHgRkZGRSE5OVrgOIyMjrFmzBn379sWGDRvg7++P169fw9zcHOXKlUPHjh0xceJEODk56bw9REREyrj86pvfIZAGwhd1yu8QiAocifA1jJBLBhEZGSlOgR4REaHVlOqPHz9Geno6TExMxDF+iIio4OJ1gYi+ZEwyfRkMlWTi/vDl+JISj7p8/85PHJOJiIiIiIiIiIh0xiQTERERERERERHpjEkmAM+fP8ekSZNQpUoVWFlZoUiRImjYsCGWLFmCxMTEPFlnYmIiypUrB4lEAolEAhcXF42XW7x4MRo2bIgiRYrAysoKVapUwaRJk/D8+fM8iZWIiIiIiIiISJ0CP/D3sWPHMGDAAMTFxYnPJSYmIigoCEFBQdi8eTN8fX1RoUIFva535syZePbsmVbLhIWFoWPHjnj8+LHc848ePcKjR4+wefNm7Ny5E507d9ZnqEREREREREREahXolkzBwcHo06cP4uLiYG1tjfnz5+PKlSs4d+4cRo4cCQAIDQ1Fp06d8OnTJ72ud/ny5bCwsICNjY1Gy3z69AmdOnUSE0wjR47EuXPncOXKFcyfPx/W1taIi4tDnz59cPv2bb3FSkRERERERESkiQLdkmnChAlISkqCiYkJTp8+jSZNmoivtWrVChUrVsQvv/yC0NBQLF26VC9TfGdkZGDkyJHIyMjArFmzsGXLFo0SWEuWLEFoaCgAYPHixfj555/F15o0aQIPDw+0bNkSiYmJmDhxol6nkyciIiIiIiIiUqfAtmQKDAyEv78/AGD48OFyCSapSZMmoWrVqgCAFStWIC0tTef1rlixAjdv3kTlypUxZcoUjZZJS0vDypUrAQBVq1bFpEmTcpRp2rQphg8fDgC4ePEibty4oXOsRERERERERESaKrBJpsOHD4uPhw4dqrCMkZERBg0aBAD48OED/Pz8dFrn8+fPMXPmTADA+vXrYWZmptFyfn5++PjxIwBg8ODBMDJS/LENGTJEfHzo0CGdYiUiIiIiIiIi0kaBTTJdvnwZAGBlZYX69esrLdeyZUvxcUBAgE7r/P7775GQkICBAwfCw8ND4+WksWaPJ7sGDRrA0tISgO6xEhERERERERFpo8COyRQSEgIAqFChAkxMlL8NVapUybFMbuzZswcnTpyAvb09li5dqtWyDx8+VBhPdiYmJqhQoQLu3r2bq1gjIyNVvh4VFaV1nURERERERERUMBTIJFNycjJiYmIAAKVKlVJZ1t7eHlZWVkhISEBERESu1vf+/XtMnDgRALBo0SI4OTlptbw0+WNlZQU7OzuVZUuXLo27d+/i7du3SElJgbm5ucbrKV26tFZxERERERERERFJFcjucrKzuVlbW6stb2VlBQCIj4/P1fp+/vlnvH79Gk2aNMHIkSO1Xl4arzaxArmPl4iIiIiIiIhIWwW2JZOUJoNvS1sDJSUlab2uS5cuYevWrTAxMcH69eshkUi0rkMarzaxAtrHq66lVlRUFNzc3LSqk4iIiIiIiIgKhgKZZLKwsBAfp6amqi2fkpICAChUqJBW60lJScGoUaMgCAImTJiAWrVqaRfo/yeNV5tYAe3jVdd1kIiIiIiIiIhImQLZXc7GxkZ8rEmXsoSEBACadVeTNX/+fDx69AilS5fGnDlztAtShjRebWIFtI+XiIiIiIiIiCi3CmxLJgcHB8TGxqqdUe39+/di4kbbgbF///13AECbNm1w7NgxhWWkdSckJGDPnj0AgKJFi6JVq1ZimVKlSuH69etISEjAhw8fVA7+Le3y5uTkpNWg30REREREREREuiiQSSYAqFatGvz9/REWFob09HSYmCh+K/777z/xcdWqVbVah7R7m4+PD3x8fFSWjYmJQb9+/QAALVu2lEsyVatWDQcOHBDjady4scI60tPT8eTJk1zFSkRERERERESkiwLZXQ4AmjVrBiCrBdHNmzeVlrt48aL42N3dPc/jUkQaKyAfT3ZBQUFiy6j8ipWIiIiIiIiICqYCm2Tq3r27+FhZK6PMzEzs2LEDAGBnZwdPT0+t1iEIgtq/smXLAgDKli0rPnfhwgW5ejw8PFC4cGEAwPbt2yEIgsL1bdu2TXzco0cPrWIlIiIiIiIiItJFgU0yubm5oXnz5gCALVu24OrVqznKLF26FCEhIQCACRMmwNTUVO71CxcuQCKRQCKRYMiQIXkWq5mZGX744QcAQEhICP74448cZa5evYotW7YAyOpu17BhwzyLh+hzNnv2bPG4VMTFxUUvx6zs8Z89Mfw1km7r7Nmz8zuUz4q6/WDIkCGQSCRwcXExeGxERERERIZWYMdkAoAVK1bA3d0dSUlJ8PLywrRp0+Dp6YmkpCTs2bMHGzduBABUqlQJkyZNytdYf/75Z+zduxehoaH45ZdfEBYWhr59+6JQoULw8/PDggULkJ6ejkKFCmH58uX5Gqs+uPzqm98h5JnwRZ0Mur7U1FQcOHAAJ0+eRGBgIN6+fYu4uDgULlwYZcuWhZubG7799lu0atUKRkYFNu9MeezChQtKW4MWKlQITk5OqFu3Lnr37o3evXsrHSePiIiIiIg+XwX6G2XdunWxd+9e2NraIj4+HtOmTUOTJk3QqlUruQSTr68vbGxs8jVWGxsb+Pr6omLFigCAjRs3olWrVmjSpAmmTZuG+Ph42NraYt++fahTp06+xkqfj4MHD6Jy5crw9vbGX3/9hUePHuHdu3dIT09HbGwsbt26hfXr16Nt27aoWrUqfH2/3uSeJsLDw8VWKbLdTylvJSUl4cWLFzhy5Aj69++Ppk2bIjo6Or/D+uyxlRQRERERfW4K/E/FXbp0wd27d7FixQr4+voiMjISZmZmqFChAnr16oVx48bB0tIyv8MEAFSoUAHBwcFYs2YN9u/fj7CwMKSmpqJ06dLo2LEjJkyYII7xRDRv3jzMnDlT/L9t27bo2rUrqlWrBjs7O7x79w6PHj3CsWPHcObMGYSGhuJ///sfOnUybEsrQwsPD9dLPR4eHkrHRyPVxowZg++//178Pz4+HkFBQVi6dCnCw8Nx48YNdOvWDdeuXVPa7fFLsW3bNiYsiYiIiKjAKPBJJiBr0O1ly5Zh2bJlWi2njy+Z2n7htbKywi+//IJffvlFp/XS183Hx0dMMBUtWhT79u1Dy5Ytc5Rr06YNxo4di/v37+PHH3/E27dvDR0qFUBFixZFjRo15J5r3Lgx+vfvDzc3N4SFhSEwMBDHjx9Hly5d8ilKIiIiIiLSVoHuLkf0NXr58iXGjRsHICspefHiRYUJJlk1atTAqVOnMHnyZEOESKSQvb09pk6dKv7/77//5mM0RERERESkLSaZiL4yf/75JxITEwEAc+fORZUqVTRazsjICAMGDFD6+uXLlzFw4EC4uLjAwsICdnZ2qFu3LqZPn66yBZSi2bf27duH1q1bw8nJCYUKFULlypXxyy+/4N27d2rjjIyMxNixY1GuXDlYWFjA2dkZXbt2xdmzZzXaTmWzy0kkEri6uor/Dx06VIxb0cxqms4uFx8fj0WLFqFJkyYoUqQIzM3NUapUKfTs2RPHjx9XGauHhwckEgk8PDwAZCUQf/rpJ1SoUAGFChWCg4MD2rVrh5MnT6qs5/379/Dx8cGAAQNQrVo1WFtbw8zMDMWLF0e7du2wceNGpKamqqzDUNzc3MTHz58/Fx9nf78zMzOxdetWeHp6olixYjAyMlI4Y+CtW7fw3XffoXLlyrC2toaVlRUqV66MMWPGIDQ0VG08SUlJWLBgAWrXrg0rKys4ODjA3d0dmzZtQmZmptrlNR036dOnT1i6dClatWqF4sWLw8zMDLa2tqhbty7Gjx+PgIAAsax0BsXt27eL71P2fVVZN8Pw8HD8+OOPqF69OmxsbGBpaYmKFSti9OjRuHfvnsoYsx8H58+fR69evVC6dGmYmppybCgiIiIiYnc5oq+JIAjiF08rKyuMHDlS5zozMzPxww8/YM2aNXLPp6Sk4Pbt27h9+zZWr16N/fv3o23btmrrGjhwIP7++2+550NDQ7FkyRIcOnQI/v7+KF68uMLl/f390blzZ8TFxYnPRUVF4dixYzh27JhcEuhzEBwcjM6dO+PVq1dyz798+RIHDhzAgQMH8M0332Dnzp2wsLBQWVdAQAC6d++OmJgY8bnk5GScPn0ap0+fxpIlS5S2RKtbt65cwkbq9evX4vLr16/HiRMnlL73hmJqaio+zsjIUFgmOTkZ7dq1U5lYzMzMxOTJk7F8+fIc3ZpDQ0MRGhqKzZs3Y82aNRg1apTCOqKjo9GqVSuEhISIzyUmJuLKlSu4cuUKDhw4gJ9++kmbzVPo7Nmz6Nevn9xnCwBpaWlyx5iu3bN37NiBUaNGISUlRe75sLAwhIWFYcuWLZg3b55cazJl/ve//2HBggU6xUNEREREXx8mmYi+Ig8ePBC/qDZv3lwvsyL++uuvYoLJ1dUVU6ZMQb169ZCQkICjR49i9erV+PjxIzp37ozAwEDUrl1baV0zZszAlStX0L17dwwaNAhly5bF69evsWbNGvj6+iIsLAw//vgjdu/enWPZFy9eiAkmIyMjjBo1Cj179kThwoVx9+5dLFq0CLNnz0aDBg1ytZ337t3Dq1ev0K5dOwDAb7/9hm7dusmVKVq0qMb1vXz5Eq1bt8b79+/FllN9+/aFg4MDHj58iKVLl+LOnTs4ePAghgwZgj179iitKyoqCt27d4eRkREWLVqEZs2awczMDJcvX8bcuXPx4cMHTJ06FR06dED16tVzLJ+RkYFGjRqhc+fOqFu3LooVK4bU1FQ8e/YMf//9N/79918EBwejb9++KltlGYJsaxpnZ2eFZaZMmYK7d++ia9euGDJkiLgfySYfx48fj7Vr1wIAWrRogSFDhqBcuXKwtLTEnTt3sHz5cjx48ACjR49G8eLF0bVrV7l1pKeno3PnzmKCycvLC2PGjEHp0qXx4sULrF27FqdOndKo9Z0qfn5+6NChA9LT02FsbIyBAweiW7duKFOmDJKTk/Hw4UOcPHkSx44dE5f5/vvv0bNnT0yfPh1HjhyBs7MzTp06pXI9vr6+GDJkCARBgLW1NSZNmoQ2bdrAxMQEV65cwcKFCxETE4Np06bBzs4OY8aMUVrXwYMHce/ePdSsWRM//vgjatSogaSkJNy+fVun94KIiIiIvnxMMhF9Re7cuSM+rl+/vs713bt3D0uXLgWQNW6Tv78/7OzsxNc9PDzg5eWFTp06ITU1FaNGjcL169eV1nflyhX89ttv+N///if3fPv27dG+fXucPn0a//zzD1auXAknJye5MpMmTRKTCH///Tf69esnvtagQQP06tULzZs3R1BQUK62tUaNGrC2thb/L1myZI7BqbUxceJEvH//HgCwadMmDB8+XHytfv366N27Nzp06AA/Pz/s3bsXgwcPRocOHRTWFRoairJlyyIgIAAlS5YUn2/YsCEaNmyIFi1aID09HRs3bsSKFStyLH/+/HlUrFgxx/NNmzZF//794ePjg2HDhuHixYs4d+4cWrdunevt1kV6erq4vwEQuwlmd/fuXUyfPh3z5s1T+PqZM2fEBNPmzZvl3nsg630bMGAAOnXqhPPnz+OHH35Ax44dYWLyf5fEDRs24ObNmwCAUaNGYcOGDeJr9evXR48ePTB8+HBs3bo1V9sKZLXIGjBgANLT02FpaQlfX98c29y0aVOMGDECERER4nNFixZF0aJFxWPR1NRU5b6alpaGUaNGiQkmf39/1KlTR3y9cePG+Pbbb9GkSRNERUVh8uTJ6NWrFxwdHRXWd+/ePbRu3Rq+vr4wNzcXn2/RooX2bwIRERERfVU4JhPRVyQ2NlZ8rE2rG2XWrVsnjjuzefNmuQSTVPv27TFs2DAAQGBgIG7cuKG0vvr162PatGk5npdIJGK3o/T0dFy9elXu9ejoaBw6dAgA0LlzZ7kEk5SNjQ02btyo2YblsVevXonxtm/fPkeSAwDMzc2xdetWMbGxevVqlXWuWrVKLsEk1axZMzRq1AhAVndCRRQlmGQNHTpUTDocPnxYZdm8kJCQgIsXL6Jt27a4du0agKxZP3v37q2wfKVKlVR2jVy0aBEA4Ntvv1X43gOAhYWF+J4/f/4cfn5+cq9Lk1TFihXDn3/+qbCOFStW5EiGamPHjh1iV8oFCxYoTaoBQOnSpXO9nkOHDonrmT59ulyCSaps2bJYsmQJgKwugT4+PkrrMzIywubNm+USTEREREREAJNMRF+VT58+iY+trKx0rk865k316tXFRIYismM/qRonx9vbW+mAxLItr54+fSr3mp+fnzg+z9ChQ5XW7+bmprC7mKFduHBBjFdZkgPIGoRcOo6V7DLZ2dnZoVOnTkrrkb532d83RQRBQHR0NEJDQ3H//n3xT5rAkm0Nl1fmzJkjN0C1tbU1PDw8xK56RYsWxeHDh5UmMfr06QNjY2OFr8XFxYn19OzZU2UcVatWFVvryCY2o6Ki8PDhQwBA7969YWlpqXB5a2trpYkwTUgHftfX+GnKSI9JiUQiJoQV6dWrFwoXLiy3jCLu7u4c5JuIiIiIFGKSiegrIjsGU0JCgk51paSk4PHjxwCgMsEEZA0sLR2w+f79+0rLqZrprkiRIuJj2WQZID9OT8OGDVXGIjs7WX6RfQ/UvXfS1xMTE5UmiSpWrAgjI+Wna+l7l/19k+Xr64vOnTujcOHCKFGiBCpXroyaNWuKf76+vgCQY/BpQ3J1dcXPP/+Me/fuKWxtI1WrVi2lrwUHB4ut7/r166dw1jXZP+n2RkdHi3UYan8LDg4GkJUkVJbI0gfp/ujq6qqy5ZWZmRnq1q0rt4wiqt5/IiIiIirYOCYT0VfEwcFBfPz69Wud6pKOJwSo73pnamoKBwcHREdHqxwIWdUXadkkSvYWPbJ1qoulWLFiKl83BG3ilZ3NTdl7py4BIX3vpMkVWYIgYOTIkdiyZYvKOqSSkpI0KqeLMWPG4PvvvweQ1brGwsICjo6OYisadezt7ZW+9ubNm1zFlJiYKD421P4mTXCVKFEi13VoQro9mnShle6Pqo5jVe8/ERERERVsTDIRfUVkZ3a7deuW3upV1sUtP3xOsWgiv+PdunWrmGCqU6cOJk6ciEaNGqFkyZKwtLQUu50NGjQIf/31FwRByPOYihYtqtOg6sq6ygHyCcoNGzagadOmGtWpLHGS35+fPulrW1S9/0RERERUsDHJRPQVqV69OhwdHRETEwN/f3/ExcXB1tY2V3XJfulW1yoqPT1dHHRcttubvmSPRdUgyLq24NIH2fdAXbyy3bTy4r3btGkTAKBChQq4cuUKChUqpLCcqpYrXxLZ1nyWlpa5SmZps+/rsr85OjoiMjISUVFRua5DE9L9SpNYpftjXuyLRERERPT145hMRF8RiUSCwYMHA8gak2nz5s25rsvc3Fyclez69esqywYHByMtLQ0AdGqhokzNmjXFx6pmr9PkdVX01dJD9j1Q994FBgYCyEqIlCtXTi/rl/XgwQMAQNeuXZUmmARB0GvLt/xUp04d8XMMCAjIVR2G2t/q1asHAAgKCpLrrqcpTfdX6f747NkzvH37Vmm5tLQ0cZyovDiOiYiIiOjrxyQT0Vfmxx9/FMfwmTlzJv777z+NlsvMzMTOnTvlnmvTpg2ArESFNBmiiGwyS7qMPnl6eopddLZv36603I0bN1QOWKyOhYWF+DglJSXX9Xh4eIjxbt26VWm5Fy9e4MyZMzmW0af09HQAqgeCP3LkSJ63pjEUJycnNG7cGACwa9culUkVZZydnVG1alUAwP79+5WOU5WQkIB9+/blOtYuXboAyBoPauPGjVovL91f1e2r0mNSEAT4+PgoLffPP//g48ePcssQEREREWmDSSair0zJkiWxevVqAFlfglu2bImLFy+qXObhw4do3749lixZIvf8mDFjxEGlR40ahbi4uBzLnj59Whzzx83NTe1sXLlRokQJdOvWDQBw9OhRhV/s4+PjMXr0aJ3W4+DgADMzMwDAkydPcl2Ps7MzevToAQA4efKkwsRYamoqhg0bJrYAGzduXK7Xp4q0NdqxY8cUdol78uQJxo4dmyfrzi/Tp08HAMTFxaFnz5748OGD0rIpKSlYs2YNkpOT5Z4fM2YMgKzuY5MmTVK47I8//pjrgcYBYMCAAShZsiQA4H//+5/K4zQyMjLHc9IBw9+8eaNyZsHu3bvD2dkZADB//ny52fOkIiIiMHnyZABZreqGDh2q+YYQEREREf1/TDIRfYWGDh2KuXPnAsj6Aurh4YF27dph7dq18PPzQ3BwMM6dO4d169ahc+fOqFWrltiiRlbNmjXFL9h37txBvXr1sGnTJgQFBeHixYuYPHkyOnfujIyMDJiZmWHDhg15tk1Lly6FjY0NAMDb2xtjx46Fn58fbt68CR8fH9SvXx/BwcFo0KBBrtdhYmIiJsm2bt2K3bt3IyQkBGFhYQgLC9Nq3KI///xTHNtn2LBhGDlyJM6ePYubN29i586daNSoEc6dOwcA6N27Nzp06JDruFUZNGgQAODVq1do0qQJtm7disDAQFy6dAmzZ89G/fr18e7dO7Hr1tegY8eOmDBhAgDg0qVLqFq1KubMmYNz587h9u3bCAgIwPbt2zFixAiUKFEC48aNE1t8SY0ZMwZ169YFAKxbtw4dOnTAkSNHcOvWLRw5cgTt2rXDpk2bdNrfLCws8Ndff8HExASJiYlo06YNhg0bhqNHj+LWrVu4evUqfHx80KtXL5QvXz7H8tJBzTMzM/Hdd9/h2rVr4r4aFhYmljMzM8PGjRshkUgQFxcHd3d3zJs3D1euXMH169fx559/okGDBnj16hUA4I8//oCjo2Out4uIiIiICi4O/E30lZoxYwaqV6+OSZMmITw8HKdPn8bp06eVlq9evToWL16c4/lFixYhISEBa9euxZMnTzBq1KgcZQoXLox9+/ahTp06+twEOS4uLjh69Ci6du2KT58+Ye3atVi7dq1cmZkzZ0IikSAoKCjX65k6dSq6dOmC2NhYeHt7y702a9YszJ49W6N6SpUqhXPnzqFz58549eoVNm/erHCMrG+++UZlF0BdTZgwAWfOnMHp06cRGhqK4cOHy71eqFAh7NixA76+vl/NuExAVpKvSJEimDdvHqKjo1V+blZWVjm6KpqYmOD48eNo1aoVHj16hH///Rf//vuvXBkvLy9MmjQJ7dq1y3Wcnp6eOH78OPr164f379/Dx8dHZZc2Wa1atULjxo1x7do17Nq1C7t27ZJ7XXamwE6dOsHHxwejR4/Gp0+fMHPmTMycOVOuvLGxMebNmye24iIiIiIi0haTTPRZCl/UKb9D+Cp888036Ny5M/755x+cPHkSN27cELvW2NrawsXFBY0bN0bPnj3h4eGhcCBhIyMjrFmzBn379sWGDRvg7++P169fw9zcHOXKlUPHjh0xceJEODk55fn2eHh44MGDB1i4cCFOnDiBqKgo2Nvbo0GDBhg/fjzatWuncRJImU6dOuHcuXNYsWIFbty4gbdv34pd2rRVt25dPHr0CKtXr8bhw4fx6NEjJCYmwtHREY0bN8aQIUPEcXnyiqmpKXx9fbFu3Trs2LEDDx8+hCAIKFmyJNq0aYMJEyagSpUq8PX1zdM4DE0ikWDmzJkYOHAg1q9fj/Pnz+Pp06f4+PEjLC0tUbp0adStWxdeXl7o0aOHwkHRnZ2dERwcjGXLlmHPnj148uQJzM3NUaVKFQwaNAijR4/GpUuXdI61Xbt2ePr0KdatW4fjx4/j0aNH+PDhA6ysrFChQgW0aNEiR8ITyDo2T58+jcWLF+PYsWN48uQJEhIS5JJLsgYPHoyWLVti+fLlOH36NF68eIHMzEw4OzujVatWGD9+vNyg50RERERE2pIIyu5GibKJjIwUp2KPiIhAqVKlNF728ePHSE9Ph4mJiThGDBERFVy8LhDRl8zl16/rx5mvlaF+uOb+8OX4khoz6PL9Oz9xTCYiIiIiIiIiItIZk0xERERERERERKQzJpmIiIiIiIiIiEhnTDIREREREREREZHOmGQiIiIiIiIiIiKdMclEREREREREREQ6Y5KJiIiIiIiIiIh0xiQTERERERERERHpjEkmIiIiIiIiIiLSGZNMRERERERERESkMyaZyCCMjLJ2tYyMDAiCkM/REBFRfhIEARkZGQAAY2PjfI6GiIiIiPSFSSYyCDMzMwBZXyxSUlLyORoiIspPiYmJ4g8O0usDEREREX35mGQig7CyshIfx8XF5WMkRESUnwRBwLt378T/bW1t8zEaIiIiItInJpnIIKytrcXHsbGxiI2NFbtKEBHR108QBCQkJCAyMhLx8fEAAIlEInd9ICIiIqIvm0l+B0AFg5mZGZycnPD27VsAwJs3b/DmzRsYGxtDIpHkc3RERJTXso/JJ5FIULJkSXHMPiIiIiL68jHJRAbj4OCA1NRUfPz4UXyOrZmIiAoeaYLJxsYmv0MhIiIiIj1ikokMRiKRwNnZGUWKFMGHDx+QmJjIJBMRUQFhbGwMMzMz2Nrawtrami2YiIiIiL5CTDKRwVlYWKB48eL5HQYRERERERER6RF/RiQiIiIiIiIiIp0xyURERERERERERDpjkomIiIiIiIiIiHTGJBMREREREREREemMSSYiIiIiIiIiItIZk0xERERERERERKQzJpmIiIiIiIiIiEhnTDIREREREREREZHOmGQiIiIiIiIiIiKdMclEREREREREREQ6Y5KJiIiIiIiIiIh0xiQTERERERERERHpjEkmIiIiIiIiIiLSGZNMRERERERERESkMyaZiIiIiIiIiIhIZ0wyERERERERERGRzphkIiIiIiIiIiIinTHJREREREREREREOmOSiYiIiIiIiIiIdMYkExERERERERER6YxJJiIiIiIiIiIi0hmTTEREREREREREpDMmmYiIiIiIiIiISGdMMhERERERERERkc6YZCIiIiIiIiIiIp0xyURERERERERERDpjkomIiIiIiIiIiHTGJBOA58+fY9KkSahSpQqsrKxQpEgRNGzYEEuWLEFiYqJOdYeEhGD16tUYPHgw6tWrh1KlSsHCwgJWVlYoV64c+vTpgyNHjkAQBJX1DBkyBBKJRKO/8PBwnWImIiIiIiIiItKWSX4HkN+OHTuGAQMGIC4uTnwuMTERQUFBCAoKwubNm+Hr64sKFSrkqv758+dj586dCl979uwZnj17hn379qFly5Y4cOAAHBwccrUeIiIiIiIiIqL8VKCTTMHBwejTpw+SkpJgbW2NqVOnwtPTE0lJSdizZw82bdqE0NBQdOrUCUFBQbCxsdF6HSYmJmjUqBHc3d1Rs2ZNFC9eHE5OTnj//j3+++8/bNiwAffv38fFixfRpUsXXL58GUZGyhuYOTs749SpUyrXWbJkSa3jJCIiIiIiIiLSRYFOMk2YMAFJSUkwMTHB6dOn0aRJE/G1Vq1aoWLFivjll18QGhqKpUuXYvbs2VqvY/PmzTAxUfw2t2nTBmPGjEHv3r1x8OBBXL16FcePH0fXrl2V1mdqaooaNWpoHQcRERERERERUV4qsGMyBQYGwt/fHwAwfPhwuQST1KRJk1C1alUAwIoVK5CWlqb1epQlmKSMjY3x888/i/9LYyIiIiIiIiIi+pIU2CTT4cOHxcdDhw5VWMbIyAiDBg0CAHz48AF+fn55EotsN7zk5OQ8WQcRERERERERUV4qsEmmy5cvAwCsrKxQv359peVatmwpPg4ICMiTWPbs2SM+rlKlSp6sg4iIiIiIiIgoLxXYMZlCQkIAABUqVFDZpU026SNdRh9iYmLw+PFjbN68GT4+PgAAR0dH9O/fX+VysbGxaNmyJe7fv4/4+HgUKVIEtWrVQpcuXTBs2DBYWlrmOqbIyEiVr0dFReW6biIiIiIiIiL6uhXIJFNycjJiYmIAAKVKlVJZ1t7eHlZWVkhISEBERIRO6/Xw8MDFixcVvubo6IhDhw7Bzs5OZR3x8fG4dOmS+H90dDSio6Nx+vRpLFq0CPv27UPTpk1zFV/p0qVztRwRERERERERUYHsLvfp0yfxsbW1tdryVlZWALISPHnhhx9+QEhICJo1a6a0jEQiQePGjTF//nycPHkSt27dwpUrV7Bhwwa4ubkBAF6+fAkvLy8EBwfnSZxERERERERERMoU2JZMUmZmZmrLm5ubAwCSkpJ0Wq+Pjw8SEhIgCAI+fPiAoKAgrFu3DqtXr8bTp0+xefNmFCtWTOGyf/75p8JWTk2aNMHIkSMxffp0LFiwAAkJCRgxYgSCgoIgkUi0ik9dS62oqCgxoUVEREREREREJKtAJpksLCzEx6mpqWrLp6SkAAAKFSqk03pdXV3l/m/evDnGjBmDXr164fjx42jYsCGuXLmisAufqm50EokE8+fPx/Xr13Hu3DmxlZO7u7tW8anrOkhEREREREREpEyB7C5nY2MjPtakC1xCQgIAzbrWacvCwgI+Pj6wtLREREQEfvnll1zXNXr0aPGxsrGfiIiIiIiIiIjyQoFMMllYWMDBwQGA+hnV3r9/LyaZ8mpgbEdHR7HV0ZEjR5CWlpareqpVqyY+fvnypV5iIyIiIiIiIiLSRIFMMgH/l5AJCwtDenq60nL//fef+Lhq1ap5Fo+TkxMAIDExUZz5TlvajsFERERERERERKQvBTbJJJ3JLSEhATdv3lRaTrbbmbZjHGlDtuVRbrvlPXz4UHzs7Oysc0xERERERERERJoqsEmm7t27i499fHwUlsnMzMSOHTsAZA287enpmSexREZG4urVqwCAsmXLyo0ZpY0NGzaIj1u2bKmX2IiIiIiIiIiINFFgk0xubm5o3rw5AGDLli1ikkfW0qVLERISAgCYMGECTE1N5V6/cOECJBIJJBIJhgwZkmP50NBQnD9/XmUcHz9+hLe3tzjL3aBBg3KUuXbtGqKiopTWIQgCpk+fjrNnzwIAateunaetroiIiIiIiIiIsjPJ7wDy04oVK+Du7o6kpCR4eXlh2rRp8PT0RFJSEvbs2YONGzcCACpVqoRJkyZpXf+rV6/QunVr1K5dG927d0f9+vVRvHhxmJiYIDo6GgEBAdiyZQuio6MBADVq1MCvv/6ao55///0XixYtQvv27dG2bVtUq1YNdnZ2SElJwd27d7F161Zcv34dAGBpaYlNmzZxfCYiIiIiIiIiMqgCnWSqW7cu9u7diwEDBiAuLg7Tpk3LUaZSpUrw9fXNdRc2ALhz5w7u3LmjskynTp3g4+MDS0tLha+npKTgyJEjOHLkiNI6ypQpg127dqFhw4a5jpWIiIiIiIiIKDcKdJIJALp06YK7d+9ixYoV8PX1RWRkJMzMzFChQgX06tUL48aNU5r4Ucfd3R2nTp3C2bNnERQUhMjISLx+/RqJiYmwtbWFq6srGjdujH79+qns3jZ06FAUK1YMV69exd27d/HmzRvExsbCxMQEjo6OqFevHrp06QJvb29YWFjk9q0gIiIiIiIiIso1iSAIQn4HQV+GyMhIlC5dGgAQERGBUqVK5XNERERERESG5/Krb36HQBoIX9TJIOvh/vDlMNQ+oQ9f6vfvAjvwNxERERERERER6Q+TTEREREREREREpDMmmYiIiIiIiIiISGdMMhERERERERERkc6YZCIiIiIiIiIiIp0xyURERERERERERDpjkomIiIiIiIiIiHTGJBMREREREREREemMSSYiIiIiIiIiItIZk0xERERERERERKQzJpmIiIiIiIiIiEhnTDIREREREREREZHOmGQiIiIiIiIiIiKdMclEREREREREREQ6Y5KJiIiIiIiIiIh0xiQTERERERERERHpjEkmIiIiIiIiIiLSGZNMRERERERERESkMyaZiIiIiIiIiIhIZ0wyERERERERERGRzphkIiIiIiIiIiIinTHJREREREREREREOmOSiYiIiIiIiIiIdMYkExERERERERER6YxJJiIiIiIiIiIi0hmTTEREREREREREpDMmmYiIiIiIiIiISGdMMhERERERERERkc6YZCIiIiIiIiIiIp0xyURERERERERERDpjkomIiIiIiIiIiHTGJBMREREREREREemMSSYiIiIiIiIiItIZk0xERERERERERKQzJpmIiIiIiIiIiEhnTDIREREREREREZHOmGQiIiIiIiIiIiKdMclEREREREREREQ6Y5KJiIiIiIiIiIh0ZtAkU0hICH788Uc0aNAARYoUgampKYyNjVX+mZiYGDJEIiIiIiIiIiLKBYNlcJYtW4apU6ciPT0dgiAYarVERERERERERGQABkky/fvvv5g8eTIAQCKRoHHjxqhfvz6KFCkCIyP22CMiIiIiIiIi+tIZJMm0fPlyAIC9vT2OHj0Kd3d3Q6yWiIiIiIiIiIgMxCDNiIKCgiCRSDBz5kwmmIiIiIiIiIiIvkIGSTIlJiYCAJo1a2aI1RERERERERERkYEZJMlUsmRJAEBqaqohVkdERERERERERAZmkCRTly5dAAABAQGGWB0RERERERERERmYQZJMkydPRpEiRbB06VJER0cbYpVERERERERERGRABkkyOTs748iRI8jIyEDTpk1x4sQJQ6yWiIiIiIiIiIgMxMQQK2nVqhUAoEiRIggNDUWXLl1gZ2eHihUrwtLSUuWyEokE586dM0SYRERERERERESUSwZJMl24cAESiUT8XxAEvH//HoGBgUqXkUgkEARBbjkiIiIiIiIiIvo8GSTJ1KJFCyaLiIiIiIiIiIi+YgZryURERERERERERF8vgwz8TUREREREREREXzcmmYiIiIiIiIiISGcG6S6niCAIePr0Kd69ewcga+a5cuXKcewmIiIiIiIiIqIvkMGTTKdOncLq1atx4cIFJCYmyr1maWkJT09PjBs3Dl5eXoYOjYiIiIiIiIiIcslg3eVSU1Ph7e2Njh074sSJE0hISIAgCHJ/CQkJ8PX1RYcOHeDt7Y3U1FRDhUdERERERERERDowWEsmb29vHDp0CIIgwMTEBG3btkWjRo1QvHhxAEB0dDQCAwNx5swZpKWlYe/evUhPT8e+ffsMFSIREREREREREeWSQZJMvr6+OHjwICQSCTw9PbF161aULVtWYdkXL15g2LBhOH/+PA4cOIATJ06gY8eOhgiTiIiIiIiIiIhyySDd5bZt2wYAqF27Nv7991+lCSYAKFOmDE6ePIk6deoAAHx8fAwQIRERERERERER6cIgSaZr165BIpFg0qRJMDU1VVve1NQUkydPhiAIuHbtmgEiJCIiIiIiIiIiXRgkyfT27VsAQLVq1TRepkqVKgCAmJiYPImJiIiIiIiIiIj0xyBJJisrKwBAbGysxsu8f/8eAGBpaZknMcl6/vw5Jk2ahCpVqsDKygpFihRBw4YNsWTJEiQmJupUd0hICFavXo3BgwejXr16KFWqFCwsLGBlZYVy5cqhT58+OHLkCARB0Ki+9PR0rF+/Hs2bN4eTkxMKFSqE8uXLY/To0Xjw4IFOsRIRERERERER5ZZBBv6uXLkyrl+/jr1796JNmzYaLbN3715x2bx07NgxDBgwAHFxceJziYmJCAoKQlBQEDZv3gxfX19UqFAhV/XPnz8fO3fuVPjas2fP8OzZM+zbtw8tW7bEgQMH4ODgoLSumJgYdOzYETdu3JB7/unTp9i4cSO2b9+O1atXY8SIEbmKlYiIiIiIiIgotwzSkqlr164QBAE+Pj7iIOCq/PXXX9i6dSskEgm6d++eZ3EFBwejT58+iIuLg7W1NebPn48rV67g3LlzGDlyJAAgNDQUnTp1wqdPn3K1DhMTEzRq1Ag//fQTfHx8cPLkSQQFBeHMmTNYtWoVatSoAQC4ePEiunTpgszMTIX1ZGRkoEePHmKC6ZtvvsHJkydx/fp1rFy5EkWLFkVKSgpGjx6NkydP5ipWIiIiIiIiIqLckgia9tPSQUJCAipVqoTo6GgAQIcOHTBs2DA0atQIRYsWhUQiwevXr3H9+nVs3boVJ0+ehCAIKFmyJB49epRnXeZatGgBf39/mJiY4NKlS2jSpInc60uWLMEvv/wCAJg1axZmz56t9TrS09NhYqK8wVhGRgZ69+6NgwcPAgCOHDmCrl275ii3detWDB8+HADw/fffY82aNXKvh4WFoX79+oiLi0OFChUQEhKicr25ERkZidKlSwMAIiIiUKpUKb3WT0RERET0JXD51Te/QyANhC/qZJD1cH/4chhqn9CHL/X7t8HGZDp+/Djs7OwgCAJOnjyJXr16oUyZMrCwsIC5uTnKlCmDXr16iQkme3t7HD9+PM8STIGBgfD39wcADB8+PEeCCQAmTZqEqlWrAgBWrFiBtLQ0rdejLtFjbGyMn3/+WfxfGlN2f/zxBwCgSJEiWLJkSY7XK1SogKlTpwLISjgdOnRI61iJiIiIiIiIiHLLIEkmAKhbty7u3buHb7/9FkZGRhAEQeGfkZERevbsibt376J27dp5Fs/hw4fFx0OHDlVYxsjICIMGDQIAfPjwAX5+fnkSi42Njfg4OTk5x+uhoaEICQkBAPTu3Vtp4m3IkCHiYyaZiIiIiIiIiMiQDDLwt5SzszP279+PqKgoXLhwAffv38e7d+8AZLXQqVGjBjw8PFCiRIk8j+Xy5csAslpZ1a9fX2m5li1bio8DAgLg5eWl91j27NkjPq5SpUqO16WxZo8nu+LFi6NSpUoIDQ1FQECAfoMkIiIiIiIiIlLBoEkmqRIlSqBfv375sWqRtGVQhQoVVHZpk036SJfRh5iYGDx+/BibN2+Gj48PAMDR0RH9+/fPUfbhw4cK41GkSpUqCA0NRUREBBISEmBlZaVxTJGRkSpfj4qK0rguIiIiIiIiIipY8iXJlN+Sk5MRExMDAGoHz7K3t4eVlRUSEhIQERGh03o9PDxw8eJFha85Ojri0KFDsLOzy/GabPJHXbzSgcEEQUBkZCQqV66scXzSZYmIiIiIiIiItGWwMZk+J58+fRIfW1tbqy0vbQ0UHx+fJ/H88MMPCAkJQbNmzRS+rk28si2X8ipeIiIiIiIiIqLs9NqS6dKlS+LjFi1aKHw+N2Tr0gfZwbXNzMzUljc3NwcAJCUl6bReHx8fJCQkQBAEfPjwAUFBQVi3bh1Wr16Np0+fYvPmzShWrJhO8UpjzU286lpqRUVFwc3NTas6iYiIiIiIiKhg0GuSycPDAxKJBBKJBOnp6Tmez43sdemDhYWF+Dg1NVVt+ZSUFABAoUKFdFqvq6ur3P/NmzfHmDFj0KtXLxw/fhwNGzbElStXcnSJyx6v7P/KYs1NvOq64hERERERERERKaP37nKCIEAQBKXP5+ZP32xsbMTHmnQpS0hIAKBZ1zptWVhYwMfHB5aWloiIiMAvv/ySo4w28UpjBfImXiIiIiIiIiIiRfTaksnPz0+r5/OLhYUFHBwcEBsbq3ZGtffv34uJm7waGNvR0RHu7u44c+YMjhw5grS0NJiamoqvy7YwioyMhKOjo9K6pF3eJBIJWyYRERERERERkcHoNcnUsmVLrZ7PT9WqVYO/vz/CwsKQnp4OExPFb8V///0nPq5atWqexePk5AQASExMRExMDEqUKCEXq2w8derUUVqPNN7SpUvLDQJORERERERERJSXCuTscgDEmdwSEhJw8+ZNpeUuXrwoPnZ3d8+zeF6+fCk+zt7NTXbWOdl4souOjkZoaCiAvI2ViIiIiIiIiCg7gySZ5s6di7lz5yImJkbjZd6/fy8ulxe6d+8uPvbx8VFYJjMzEzt27AAA2NnZwdPTM09iiYyMxNWrVwEAZcuWlRuDCQAqVaoktqLat28fEhMTFdazbds28XGPHj3yJFYiIiIiIiIiIkUMkmSaPXs25syZgzdv3mi8zLt378Tl8oKbmxuaN28OANiyZYuY5JG1dOlShISEAAAmTJggN04SAFy4cEGcTW/IkCE5lg8NDcX58+dVxvHx40d4e3uLs9wNGjRIYbnJkycDyHpfFA0O/uTJEyxcuBAAUKFCBSaZiIiIiIiIiMig9Dom05dmxYoVcHd3R1JSEry8vDBt2jR4enoiKSkJe/bswcaNGwFktSSaNGmS1vW/evUKrVu3Ru3atdG9e3fUr18fxYsXh4mJCaKjoxEQEIAtW7YgOjoaAFCjRg38+uuvCusaPHgwtm7dioCAAKxZswbR0dEYOXIk7O3tERgYiHnz5iEuLg5GRkZYuXKl0jGmiIiIiIiIiIjywmebiUhLSwOAHK2H9Klu3brYu3cvBgwYgLi4OEybNi1HmUqVKsHX1zdHFzZt3LlzB3fu3FFZplOnTvDx8YGlpaXC142NjXH48GF07NgRN27cwIEDB3DgwAG5Mubm5li9ejU6dOiQ61iJiIiIiIiIiHLjs00y3b59G8D/zbqWV7p06YK7d+9ixYoV8PX1RWRkJMzMzFChQgX06tUL48aNU5r4Ucfd3R2nTp3C2bNnERQUhMjISLx+/RqJiYmwtbWFq6srGjdujH79+mk0ULejoyOuXLmCTZs2YdeuXQgJCUFCQgKcnZ3RunVrTJgwAdWrV89VrEREREREREREusiTJJN0sOzsjhw5gqCgIJXLpqSk4MmTJ9i6dSskEgkaNmyYFyHKKVu2LJYtW4Zly5ZptZyHhwcEQVD6uqmpKby8vODl5aVriCITExOMGTMGY8aM0VudRERERERERES6ypMk05AhQyCRSOSeEwQB06dP17gOQRBgZGSECRMm6Ds8IiIiIiIiIiLSszybXU4QBPFP0XOq/kxNTeHu7o6jR4+iZcuWeRUiERERERERERHpSZ60ZHr27Jn4WBAElCtXDhKJBKdOnULFihWVLieRSGBhYQEHBwcYGxvnRWhERERERERERJQH8iTJVLZsWYXPOzs7K32NiIiIiIiIiIi+XAaZXS4zM9MQqyEiIiIiIiIionySZ2MyERERERERERFRwcEkExERERERERER6cwg3eVkPXnyBEePHsWdO3cQExODpKQkuRnospNIJDh37pwBIyQiIiIiIiIiIm0ZLMmUmJiIsWPH4q+//sqRVBIEARKJJMdzAHI8T0REREREREREnx+DJJkEQUCPHj1w9uxZCIIAR0dHlCpVCrdv34ZEIkHz5s3x7t07PHr0COnp6ZBIJKhcuTKKFy9uiPCIiIiIiIiIiEhHBhmTaf/+/Thz5gwAYNasWYiOjsaOHTvE1y9evIh79+7h/fv3WLZsGaysrPDu3TvMmzcPfn5+hgiRiIiIiIiIiIh0YJAk065duwAATZo0waxZs2BkZKSwG5yVlRUmTpyIc+fO4dOnT/jmm2/w6tUrQ4RIREREREREREQ6MEiSKSgoCBKJBCNHjtSofMOGDTFmzBjExMRg5cqVeRwdERERERERERHpyiBJppiYGABAuXLlxOdMTU3Fx0lJSTmW6dSpEwDg+PHjeRwdERERERERERHpyiBJJhOTrPHFbWxsxOdkH0dHR+dYpnDhwgCAiIiIPI6OiIiIiIiIiIh0ZZAkk7OzMwDg7du34nPFixdHoUKFAAC3bt3Ksczjx48BAOnp6QaIkIiIiIiIiIiIdGGQJFPt2rUBAPfu3ROfk0gkaNSoEQBg7dq1cuXT0tKwbNkyAEDFihUNESIREREREREREenAIEmmVq1aQRAE/Pvvv3LPDxs2DIIg4MKFC/Dw8MCaNWuwePFiuLm5iYOF9+7d2xAhEhERERERERGRDgySZOrx/9i78zib6/7/48/P7GYIY5clxVii7LJvpUVCCyXZ1SVZuiZEdaWrFKEi1UXW+laWriJNSmqIEMMwZBlkN9kZZjPL+/eH3/lcM2afc+YM5nG/3dxunznn/fm8X+Oc+Zxznuf9fn+6d5dlWQoNDdVff/1l3967d2898MADMsZo7dq1Gj58uMaOHauIiAhJUv369fXPf/7THSUCAAAAAADACW4JmcqXL6/ExETFx8enucKcJH377bd65ZVXVK5cORljZIxR8eLFNXToUIWGhsrPz88dJQIAAAAAAMAJXu7qyMMj4zzL19dXb775pt58802dO3dOSUlJKlOmjCzLcldpAAAAAAAAcJLbQqacCAwMLOgSAAAAAAAAkAdumS4HAAAAAACAm5tbRjJdvHhR06ZNkyQNHjxYFSpUyLJ9VFSUPv30U0lScHCwAgIC8r1GAAAAAAAA5J1bQqYvvvhC48ePV40aNfSvf/0r2/bly5fXF198of379+vWW2/VwIED3VAlAAAAAAAA8sot0+VWrFghy7LUo0ePHLW3LEtPPvmkjDFavnx5PlcHAAAAAAAAZ7klZNq2bZskqUWLFjnep3nz5mn2BQAAAAAAwPXLLSHTqVOnJCnbtZhSK1++vCTp5MmT+VITAAAAAAAAXMctIZOfn58kKTY2Nsf7ONp6enrmS00AAAAAAABwHbeETI4RTGFhYTnex9HWMaIJAAAAAAAA1y+3hEytW7eWMUYff/yxEhMTs22fmJiojz/+WJZlqVWrVm6oEAAAAAAAAM5wS8jUv39/SdK+ffvUq1evLKfNxcbG6qmnnlJkZGSafQEAAAAAAHD98nJHJy1atNCTTz6phQsX6ptvvtGmTZs0ePBgtW7d2p5KFxUVpd9++02zZ8/WsWPHZFmWHn/8cbVt29YdJQIAAAAAAMAJbgmZJGnu3Lk6c+aMVq1apWPHjun111/PsJ0xRpJ03333acGCBe4qDwAAAAAAAE5wy3Q56eoV5n766Sd98MEHuvXWW2WMyfBf5cqVNX36dP3444/2VekAAAAAAABwfXPbSCZJsixLw4cP17Bhw7Rt2zaFh4frzJkzkqTSpUurYcOGuvvuu2VZljvLAgAAAAAAgJPcGjI5WJalBg0aqEGDBgXRPQAAAAAAAFzMbdPlAAAAAAAAcPMiZAIAAAAAAIDTXDpd7rPPPrO3+/Tpk+HteZH6WAAAAAAAALj+uDRk6tevnyzLkmVZaYIhx+15ce2xAAAAAAAAcP1x+cLfxphc3Q4AAAAAAIAbn0tDpoMHD+bqdgAAAAAAANwcXBoyVa1aNVe3AwAAAAAA4ObA1eUAAAAAAADgtOs+ZIqKiiroEgAAAAAAAJANt4RMHTt21IkTJ3K939dff6169erlQ0UAAAAAAABwJbeETKGhobrrrru0ZMmSHLW/fPmy+vXrp549e+r8+fP5XB0AAAAAAACc5ZaQycvLS+fOndOTTz6pvn376tKlS5m2/f3333XXXXfp888/lzFGNWrUcEeJAAAAAAAAcIJbQqYNGzYoKChIxhj93//9n+rXr6/169enaZOcnKxx48apXbt2OnTokIwxGjRokLZu3eqOEgEAAAAAAOAEt4RMjRo1Unh4uJ599lkZY3Tw4EG1bdtWr732mpKTk7V37141a9ZMkyZNUnJyskqXLq2lS5dq1qxZ8vf3d0eJAAAAAAAAcILbri5XpEgR/ec//9GyZctUpkwZJScn6+2331b9+vXVqFEjbd26VcYYPfjgg9qxY4ceeeQRd5UGAAAAAAAAJ7ktZHLo0qWLduzYoQ4dOsgYo127dik2Nlb+/v6aMWOGQkJCVK5cOXeXBQAAAAAAACe4PWSSpPDwcP3555+yLEvGGFmWpaSkJEVHR8sYUxAlAQAAAAAAwAluDZkSEhI0fPhwPfTQQzp16pQsy1Lfvn1VvHhxXblyRa+88orat2+vo0ePurMsAAAAAAAAOMltIVNERIQaNWqkjz76SMYYVa5cWb/++qvmzZun7du3q23btjLGaO3atbrrrrv0xRdfuKs0AAAAAAAAOMktIdOUKVPUrFkz7d69W8YYPfXUU9q+fbvatGkjSXbgNHHiRHl7e+vixYvq06ePnnrqKV28eNEdJQIAAAAAAMAJbgmZRo8erYSEBN1yyy36v//7P33xxRcqXrx4mjaWZWn06NHauHGjateuLWOMFi9erLvuussdJQIAAAAAAMAJbpsu16ZNG23fvl29evXKsl39+vW1detWvfDCC5KkY8eOuaM8AAAAAAAAOMEtIdOECRMUGhqqKlWq5Ki9r6+vpk+frhUrVqh8+fL5XB0AAAAAAACc5eWOTsaOHZun/Tp16qQdO3a4uBoAAAAAAAC4mltCpowYY/TXX3/p3LlzkqTAwEDdfvvtsiwrTbvAwMCCKA8AAAAAAAC54PaQ6aefftKMGTO0evVqxcbGprnP399f7du31wsvvKBOnTq5uzQAAAAAAADkkdsW/r5y5Yp69eqlhx56SD/88INiYmJkjEnzLyYmRiEhIXrwwQfVq1cvXblyxS21HT58WMHBwapVq5YCAgIUGBioJk2aaPLkyemCsNyKjY3VN998oyFDhqhJkyYqWbKkvL29VapUKTVv3lzjx4/X33//ne1x2rVrJ8uycvQPAAAAAADA3dw2kqlXr1769ttvZYyRl5eX7rvvPjVr1sxe2Pvvv//Wpk2b9PPPPysxMVGLFi1SUlKSFi9enK91LV++XL1791Z0dLR9W2xsrMLCwhQWFqbZs2crJCRE1atXz/WxIyIi1LJlS12+fDndfefOndPGjRu1ceNGvf/++5o1a5Z69uzp1O8CAAAAAABQUNwSMoWEhOibb76RZVlq37695s6dq6pVq2bY9siRIxowYIB+/fVX/fe//9UPP/yghx56KF/qCg8PV8+ePRUXF6eiRYtq7Nixat++veLi4rRw4UJ9+umnioyMVOfOnRUWFqZixYrl6vjR0dF2wNSyZUs9/PDDaty4sUqVKqXTp0/rm2++0aeffqro6Gg9/fTTuuWWW/Tggw9meczGjRtr3rx5ef6dAQAAAAAA8oNbQqb58+dLku6++279+OOP8vb2zrRtlSpVtGLFCjVr1kzbt2/XvHnz8i1kGjFihOLi4uTl5aWVK1eqefPm9n0dOnRQjRo1NHr0aEVGRmrq1KkaP358ro7v4eGhHj166PXXX1edOnXS3d+pUyc9+OCD6t69u5KTkzVs2DDt27cvyylvAQEBqlu3bq7qAAAAAAAAyG9uWZNp48aNsixLwcHBWQZMDt7e3nrppZdkjNHGjRvzpaZNmzZp7dq1kqSBAwemCZgcgoODVbt2bUnStGnTlJiYmKs+WrRooUWLFmUYMDl07dpVjz76qCTpwIEDCg8Pz1UfAAAAAAAA1wO3hEynT5+WpCzDlmvVqlVLknTmzJl8qWnp0qX2dv/+/TNs4+HhoT59+kiSLly4oNDQ0HyppX379vb2gQMH8qUPAAAAAACA/OSWkCkgIECSdPbs2Rzvc/78eUmSv79/vtS0bt06SVdra9SoUabt2rZta2///vvv+VJLQkKCve3p6ZkvfQAAAAAAAOQnt6zJVLNmTf3xxx9atGiR7r333hzts2jRInvf/LB7925JUvXq1eXllfl/g2NEVep9XG3NmjX2tmN6Xmb27NmjZs2aae/evYqPj1fp0qXVqFEjPfbYY3rqqadyNB0xM8eOHcvy/qioqDwfGwAAAAAA3NzcEjI98sgj2rhxo+bNm6eWLVuqX79+Wbb//PPPNXfuXFmWpW7durm8nvj4eHsaXqVKlbJsW7JkSQUEBCgmJkZHjx51eS3bt29XSEiIJKlevXrZhkwnT57UyZMn7Z+PHz+u48eP67vvvtOkSZP09ddfZ3uMzFSuXDlP+wEAAAAAALhlutywYcNUoUIFGWM0cOBAPfzww/rmm290/PhxJSYmKikpScePH9c333yjhx9+WP369VNKSooqVqyoF154weX1XLp0yd4uWrRotu0d0/0uX77s0joSEhI0aNAgJScnS5ImTJiQaVsPDw917NhRU6dO1apVqxQeHq7ffvtNH3zwgR0q7dq1S+3bt9eRI0dcWicAAAAAAEB23DKSKSAgQN9//73uvfdenT9/XitWrNCKFSsybW+MUcmSJfX999/ny5pM8fHx9raPj0+27X19fSVJcXFxLq3jhRdeUFhYmCSpb9++6tKlS6Ztv/nmG5UoUSLd7a1bt9bzzz+vwYMHa8GCBTp58qRGjhypb775Jtf1ZDdSKyoqSk2bNs31cQEAAAAAwM3PLSOZJKlBgwbasWOHHnvsMXl4eMgYk+E/Dw8PPf7444qIiNDdd9+dL7X4+fnZ21euXMm2vWNh7iJFirishnfeeUezZ8+WJDVp0kQfffRRlu0zCpgcvL29NXv2bHv9qm+//VbHjx/PdU2VKlXK8l+FChVyfUwAAAAAAFA4uGUkk0PFihW1ZMkSRUVFafXq1dq5c6fOnTsnSQoMDFTdunXVrl27fA8zihUrZm/nZApcTEyMpJxNrcuJmTNnaty4cZKuLiz+ww8/2FPy8srLy0sDBw7U6NGjJV1dTLxXr15O1woAAAAAAJATbg2ZHCpUqKCnnnqqILqWdHUkU6lSpXT27Nlsr6h2/vx5O2RyxcLYX331lZ5//nlJUtWqVfXzzz+rdOnSTh9XkurUqWNv52UkEwAAAAAAQF65Zbrcb7/9pt9++y1XaxrFx8fb++UHRyCzf/9+JSUlZdpuz5499nZer9rm8N1336lPnz5KSUlRhQoV9Msvv2R7dbvcsCzLZccCAAAAAADIDbeETO3atVOHDh108ODBHO9z/Phxe7/80KpVK0lXp8Jt2bIl03Zr1qyxt1u2bJnn/n755Rf16NFDSUlJKlWqlH7++WfdcccdeT5eRnbt2mVvV6xY0aXHBgAAAAAAyIrbFv42xrh1v+x069bN3p43b16GbVJSUvTZZ59Jurrwdvv27fPU1/r169W1a1clJCSoePHi+umnn3TnnXfm6ViZSUpK0ty5c+2f27Rp49LjAwAAAAAAZMVtIVNupaSkSJI8PT3z5fhNmzZV69atJUlz5szRhg0b0rWZOnWqdu/eLUkaMWKEvL2909y/evVqWZYly7LUr1+/DPvZtm2bOnfurJiYGAUEBCgkJESNGjXKVa2hoaG6cOFCpvcnJiZq0KBBdq1dunRxyfpRAAAAAAAAOVUgC3/nxOHDhyVJxYsXz7c+pk2bppYtWyouLk6dOnXSuHHj1L59e8XFxWnhwoWaNWuWJCkoKEjBwcG5Pv6BAwd0//332wHRW2+9peLFi2vnzp2Z7lO2bFmVLVs2zW0LFizQI488okceeUTt2rVTzZo1dcstt+jy5cvasmWLZs2aZU+VK1u2rKZNm5brWgEAAAAAAJyRLyHTkSNHMrw9KipKRYsWzXLfhIQEHThwQK+99posy3L5tLLUGjRooEWLFql3796Kjo7WuHHj0rUJCgpSSEiIihUrluvjr127VqdOnbJ/fvHFF7Pd5/XXX9f48ePT3X758mV9+eWX+vLLLzPdt169elq4cKGqVauW61oBAAAAAACckS8hU0YhhzFGnTp1yvWx+vTp44qSMtWlSxdFRERo2rRpCgkJ0bFjx+Tj46Pq1avriSee0AsvvCB/f/98rSE7Y8aMUf369bVhwwbt2rVLp0+f1rlz5+Tr66ty5cqpcePGevzxx9W9e/d8m14IAAAAAACQFcvkw8raHh7OL/Xk5+en4cOHa+LEiS6oCK5w7Ngxe62no0ePqlKlSgVcEQAAAOB+t70cUtAlIAcOTezsln54Ptw43PWccIUb9fN3voxkuvZqbf3795dlWXrzzTd16623ZrqfZVny8/NThQoV1KBBg2yn1gEAAAAAAOD6kC8hU9++fdP83L9/f0lSt27dVKdOnfzoEgAAAAAAAAXILVeXCw0NlZTxWk0AAAAAAAC48bklZGrbtq07ugEAAAAAAEABcX6FbgAAAAAAABR6bhnJlNr27du1du1a/fXXX7p06ZKSk5OzbG9ZlubMmeOm6gAAAAAAAJAXbguZ9u7dqwEDBmjjxo053scYQ8gEAAAAAABwA3BLyHT8+HG1adNGZ86ckTFGklS0aFGVLFlSHh7M2AMAAAAAALjRuSVkmjBhgk6fPi3LsjRo0CC99NJLCgoKckfXAAAAAAAAcAO3hEw//vijLMtSnz59NGvWLHd0CQAAAAAAADdyy1y1EydOSJL69Onjju4AAAAAAADgZm4JmUqWLClJKlGihDu6AwAAAAAAgJu5JWRq3LixJCkyMtId3QEAAAAAAMDN3BIyDR8+XMYY1mMCAAAAAAC4SbklZLrvvvs0ZswYhYaGasiQIUpMTHRHtwAAAAAAAHATt1xd7rPPPlPt2rXVokULzZo1S8uXL9fjjz+uWrVqyd/fP9v9WTAcAAAAAADg+uaWkKlfv36yLMv+OSoqSh9++GGO9rUsi5AJAAAAAADgOueWkEmSjDHu6goAAAAAAABu5paQ6eDBg+7oBgAAAAAAAAXELSFT1apV3dENAAAAAAAACohbri4HAAAAAACAmxshEwAAAAAAAJxGyAQAAAAAAACnuXxNpgEDBrj0eJZlac6cOS49JgAAAAAAAFzL5SHT/PnzZVmWS49JyAQAAAAAAHB9y5eryxljXHYsVwdWAAAAAAAAcD2Xh0wHDx509SEBAAAAAABwnXN5yFS1alVXHxIAAAAAAADXOa4uBwAAAAAAAKcRMgEAAAAAAMBphEwAAAAAAABwGiETAAAAAAAAnEbIBAAAAAAAAKcRMgEAAAAAAMBphEwAAAAAAABwGiETAAAAAAAAnEbIBAAAAAAAAKe5NGRq2LChGjVqpIMHD6a5/ciRIzpy5IiSk5Nd2R0AAAAAAACuE16uPNi2bdtkWZbi4uLS3H7bbbfJw8NDERERqlOnjiu7BAAAAAAAwHXApSOZLMuSJKWkpKS7zxjjyq4AAAAAAABwHXFpyFS8eHFJ0tGjR115WAAAAAAAAFznXBoy1atXT5L01ltvac+ePenWYHKMdAIAAAAAAMDNxaUh06BBg2SM0caNG3XnnXfKx8dHnp6ekq5Ol6tbt648PT1z9c/Ly6XLRgEAAAAAACAfuDRkeuaZZ/TSSy/Jw8NDxhj7n0Pq23LzDwAAAAAAANc3lw8TevfddzV8+HCFhobq+PHjSkhI0BtvvCHLsvSPf/xDZcuWdXWXAAAAAAAAKGD5MhetUqVKeuaZZ+yf33jjDUnS0KFDVadOnfzoEgAAAAAAAAXILQseValSRZZlycfHxx3dAQAAAAAAwM3cEjIdOnTIHd0AAAAAAACggLh04W8AAAAAAAAUTm4ZyZTauXPnNG/ePK1atUo7d+7UuXPnJEmBgYGqW7eu7r33XvXv31+BgYHuLg0AAAAAAAB55NaQaebMmXrppZcUGxsrSTLG2PcdP35cJ06c0MqVKzV+/HhNnTpVzz77rDvLAwAAAAAAQB65LWSaOHGiXnnlFTtYKl68uBo0aKDy5ctLkv7++2+Fh4fr4sWLiomJ0ZAhQ3ThwgWNHj3aXSUCAAAAAAAgj9wSMu3cuVOvvfaajDGqUKGCJk+erCeeeELe3t5p2iUlJWnJkiUaNWqUTpw4oVdffVWdO3fWnXfe6Y4yAQAAAAAAkEduWfh7xowZSk5OVpkyZbRhwwb16tUrXcAkSV5eXnrqqae0YcMGlS1bVsnJyZoxY4Y7SgQAAAAAAIAT3BIy/frrr7IsS2PHjlWVKlWybV+5cmWNGTNGxhj98ssvbqgQAAAAAAAAznBLyHT8+HFJUosWLXK8T8uWLSVJJ06cyJeaAAAAAAAA4DpuCZk8PT0lXV1zKaeSk5MlSR4ebikRAAAAAAAATnBLguOYIpebqW+OtjmZXgcAAAAAAICC5ZaQ6b777pMxRlOmTNGOHTuybb9z505NnjxZlmWpU6dObqgQAAAAAAAAznBLyDRy5Ej5+vrq8uXLatWqlaZMmaKzZ8+ma3f27FlNmTJFrVu31qVLl+Tr66uRI0e6o0QAAAAAAAA4wcsdnVStWlUzZ85U//79dfnyZY0ZM0Yvv/yyqlWrprJly8qyLJ08eVIHDx6UMUbGGFmWpZkzZzJdDgAAAAAA4AbglpBJkvr06aNSpUrpueee04kTJ2SM0YEDB/TXX39JkowxdtuKFStq1qxZeuihh9xVHgAAAAAAAJzgtpBJkjp37qxDhw7p22+/1apVq7Rz506dO3dOkhQYGKi6devq3nvvVbdu3eTt7e3O0gAAAAAAAOAEt4ZMkuTl5aUnnnhCTzzxhLu7ztThw4c1ffp0hYSE6OjRo/L19dUdd9yhHj16aOjQofL398/zsWNjY/Xjjz/q559/VlhYmPbv36/Lly/rlltuUVBQkO6//3794x//UPny5XN8vBkzZmjJkiU6cOCAEhISVLlyZXXu3FnDhw9X1apV81wrAAAAAABAXlkm9Ty1Qmj58uXq3bu3oqOjM7w/KChIISEhql69eq6PHRERoZYtW+ry5ctZtrvllls0a9Ys9ezZM8t2+/fv10MPPaR9+/ZlepwvvvhCDz/8cK5rzYljx46pcuXKkqSjR4+qUqVK+dIPAAAAcD277eWQgi4BOXBoYme39MPz4cbhrueEK9yon7/dcnW561V4eLh69uyp6OhoFS1aVBMmTND69ev1yy+/aPDgwZKkyMhIde7cWZcuXcr18aOjo+2AqWXLlnrnnXf0888/a+vWrfrpp5/03HPPycPDQ9HR0Xr66ae1YsWKTI916dIlde7c2Q6YBg8erF9++UXr16/XhAkTVLRoUUVHR6tnz57atm1b7v8zAAAAAAAAnOD26XLXkxEjRiguLk5eXl5auXKlmjdvbt/XoUMH1ahRQ6NHj1ZkZKSmTp2q8ePH5+r4Hh4e6tGjh15//XXVqVMn3f2dOnXSgw8+qO7duys5OVnDhg3Tvn37ZFlWuraTJ09WZGSkJOndd9/VqFGj7PuaN2+udu3aqW3btoqNjdXIkSO1evXqXNUKAAAAAADgjEI7kmnTpk1au3atJGngwIFpAiaH4OBg1a5dW5I0bdo0JSYm5qqPFi1aaNGiRRkGTA5du3bVo48+Kkk6cOCAwsPD07VJTEzU9OnTJUm1a9dWcHBwhn0NHDhQkrRmzRpt3rw5V7UCAAAAAAA4o9CGTEuXLrW3+/fvn2EbDw8P9enTR5J04cIFhYaG5kst7du3t7cPHDiQ7v7Q0FBdvHhRktS3b195eGT8sPXr18/e/vbbb11bJAAAAAAAQBYKbci0bt06SVJAQIAaNWqUabu2bdva27///nu+1JKQkGBve3p6prvfUeu19VyrcePG9pXw8qtWAAAAAACAjBTaNZl2794tSapevbq8vDL/b6hVq1a6fVxtzZo19rZjel5qu3btyrCea3l5eal69eqKiIjIU63Hjh3L8v6oqKhcHxMAAAAAABQOhTJkio+P15kzZyQp28sAlixZUgEBAYqJidHRo0ddXsv27dsVEnL1kpf16tXLMGRyhD8BAQEqUaJElserXLmyIiIidPr0aSUkJMjX1zfHtTgujwgAAAAAAJBbhXK63KVLl+ztokWLZts+ICBAknT58mWX1pGQkKBBgwYpOTlZkjRhwoQM2znqzU2tkuvrBQAAAAAAyEyhHcnk4OPjk217x2iguLg4l9bxwgsvKCwsTNLVBb27dOmSYTtHvbmpVcp9vdmN1IqKilLTpk1zdUwAAAAAAFA4uCVkqlu3rgYOHKjevXurTJky7ugyS35+fvb2lStXsm3vWJi7SJEiLqvhnXfe0ezZsyVJTZo00UcffZRpW0e9ualVyn292U0dBAAAAAAAyIxbpsvt2rVLL730kipVqqTHHntM33//vVJSUtzRdYaKFStmb+dkSllMTIyknE1Xy4mZM2dq3Lhxkq4u5P3DDz+kmeZ2LUe9ualVcl29AAAAAAAA2XFLyNSgQQMZY5SYmKilS5eqa9euqly5ssaOHavIyEh3lJCGn5+fSpUqJSn7K6qdP3/eDm5csTD2V199peeff16SVLVqVf38888qXbp0lvs4RhjFxMTowoULWbZ1THkrU6ZMrhb9BgAAAAAAcIZbQqYtW7Zo+/btGjFihEqVKiVjjKKiovTuu++qdu3aatWqlebNm5dmFE5+q1OnjiRp//79SkpKyrTdnj177O2MrvyWG99995369OmjlJQUVahQQb/88kuOpqg5ar22nmslJSXpwIEDLqkVAAAAAAAgN9x2dbl69erp/fff14kTJ/Tf//5XDz/8sDw9PWWM0YYNGzRo0CBVqFBBAwcO1Lp16/K9nlatWkm6Ojpoy5YtmbZbs2aNvd2yZcs89/fLL7+oR48eSkpKUqlSpfTzzz/rjjvuyFWt19ZzrbCwMDuoc6ZWAAAAAACA3HJbyOTg5eWl7t2767vvvtPRo0c1ceJE1axZU8YYXb58WfPnz1fbtm1Vs2ZNTZo0SVFRUflSR7du3eztefPmZdgmJSVFn332mSSpRIkSat++fZ76Wr9+vbp27aqEhAQVL15cP/30k+68884c79+uXTsVL15ckrRgwQIZYzJsN3/+fHu7e/fueaoVAAAAAAAgL9weMqVWrlw5jR49Wrt27bJHMxUrVkzGGO3bt0/jxo1T1apV1aVLFy1dutSli4U3bdpUrVu3liTNmTNHGzZsSNdm6tSp2r17tyRpxIgR8vb2TnP/6tWrZVmWLMtSv379Muxn27Zt6ty5s2JiYhQQEKCQkBA1atQoV7X6+Pho+PDhkqTdu3drypQp6dps2LBBc+bMkSS1bdtWTZo0yVUfAAAAAAAAzvAq6AIcmjVrpmbNmqlr164aPHiwTp48KenqOkM//PCDfvjhB1WoUEGjR4/W0KFD5enp6XSf06ZNU8uWLRUXF6dOnTpp3Lhxat++veLi4rRw4ULNmjVLkhQUFKTg4OBcH//AgQO6//777cW633rrLRUvXlw7d+7MdJ+yZcuqbNmy6W4fNWqUFi1apMjISI0ePVr79+/Xk08+qSJFiig0NFRvv/22kpKSVKRIEX3wwQe5rhUAAAAAAMAZ10XIdOTIEc2fP18LFizQoUOHJEnGGHl6eqpjx47atWuXjh07phMnTujFF1/U559/rpUrV6pkyZJO9dugQQMtWrRIvXv3VnR0tMaNG5euTVBQkEJCQlSsWLFcH3/t2rU6deqU/fOLL76Y7T6vv/66xo8fn+72YsWKKSQkRA899JD27dunWbNm2SGYwy233KIvvvhC9evXz3WtAAAAAAAAziiw6XLx8fH64osvdO+99+r222/XG2+8oYMHD8oYo9tvv10TJkzQkSNH9OOPP+rw4cNasWKF2rVrJ2OMtm7dqjfeeMMldXTp0kURERF68cUXFRQUJH9/f5UoUUKNGzfWpEmTFB4erurVq7ukL2dVr15d4eHhmjRpkho3bqwSJUrI399fNWvW1IsvvqiIiAg9/PDDBV0mAAAAAAAohCyT2SrS+WTjxo2aN2+eFi9erOjoaElXRy35+vrq0Ucf1aBBg7JcYPuFF17Qxx9/rNtuu01//fWXu8qGpGPHjqly5cqSpKNHj6pSpUoFXBEAAADgfre9HFLQJSAHDk3s7JZ+eD7cONz1nHCFG/Xzt1umy0VFRenzzz/X/PnztXfvXkmyr5BWr149DRo0SL17987R9LeBAwfq448/1tGjR/O1ZgAAAAAAAOScW0KmKlWqKCUlxQ6WihUrpieffFKDBg3K9VXQbrnlFkly6ZXmAAAAAAAA4By3hEzJycmSpObNm2vQoEHq2bOn/P3983SscuXKad68ea4sDwAAAAAAAE5yS8j04osvatCgQapdu7bTxypatKj69u3rgqoAAAAAAADgKm4JmaZOneqObgAAAAAAAFBAPNzRSYcOHdSxY0cdPnw4x/ucOHHC3g8AAAAAAADXN7eMZFq9erUsy1JMTEyO94mLi7P3AwAAAAAAwPXNLSOZAAAAAAAAcHO7bkMmx6gnPz+/Aq4EAAAAAAAA2bluQ6YVK1ZIkipVqlTAlQAAAAAAACA7+bIm04ABAzK8/dVXX1WJEiWy3DchIUEHDhzQ5s2bZVmW2rZtmw8VAgAAAAAAwJXyJWSaP39+ugW7jTFatmxZjvY3xkiSAgMDNXbsWJfXBwAAAAAAANfKl5CpSpUqaUKmw4cPy7IsVahQQd7e3pnuZ1mW/Pz8VKFCBbVo0UJDhgxRxYoV86NEAAAAAAAAuFC+hEyHDh1K87OHx9Wln1auXKk6derkR5cAAAAAAAAoQPkSMl2rTZs2sixLAQEB7ugOAAAAAAAAbuaWkGn16tXu6AYAAAAAAAAFxKOgCwAAAAAAAMCNj5AJAAAAAAAATnPpdLnbb79d0tWrxB04cCDd7Xlx7bEAAAAAAABw/XFpyOS4qpxlWRnenhfXHgsAAAAAAADXH5eGTH379s3V7QAAAAAAALg5uDRkmjdvXq5uBwAAAAAAwM2Bhb8BAAAAAADgNEImAAAAAAAAOI2QCQAAAAAAAE5z6ZpMR44cceXhbFWqVMmX4wIAAAAAAMA1XBoyVatWzZWHkyRZlqWkpCSXHxcAAAAAAACu49KQyRjjysMBAAAAAADgBuHSkGnevHmuPBwAAAAAAABuEC4Nmfr27evKwwEAAAAAAOAGwdXlAAAAAAAA4DRCJgAAAAAAADiNkAkAAAAAAABOc+maTJ999pm93adPnwxvz4vUx8J14uxZyde3oKsAAAAA3C4w9mJBl4CcOH3aLd3wfLiBuOk54RJnzxZ0BXliGWOMqw7m4eEhy7JkWZaSkpLS3Z6nAq85FgrOsWPHVLlyZUnSUUmVCrYcAAAAAABuSsckVf7/20ePHlWlSjfGJ3CXjmSSpMwyKxdmWQAAAAAAALjOuDRkOnjwYK5uBwAAAAAAwM3BpSFT1apVc3U7AAAAAAAAbg4uny6HQmLbNqlixYKuAgAAAHC7hm/+XNAlIAe2vnafW/rh+XDjcNdzwiVOnJDq1y/oKnKNkAl5U6qUVKZMQVcBAAAAuN05/+IFXQJywk2fV3g+3EBupM+wCQkFXUGeFEjItHXrVq1atUo7duzQuXPnJEmBgYGqW7eu7r33XjVq1KggygIAAAAAAEAeuTVk2rp1q55//nlt3rw50zbjxo1T48aN9dFHH6lx48ZurA4AAAAAAAB55eGujr7++mu1aNFCmzdvljFGxhh5e3urXLlyKleunLy9ve3bN2/erJYtW2rJkiXuKg8AAAAAAABOcEvItHfvXj3zzDO6cuWKPD09NWTIEG3evFkxMTE6ceKETpw4oZiYGIWFhWnIkCHy8vJSYmKi+vTpoz179rijRAAAAAAAADjBLSHTpEmTlJCQID8/P61cuVIfffSRGjVqJE9PT7uNp6enGjZsqI8++kg///yz/Pz8dOXKFb377rvuKBEAAAAAAABOcEvItGrVKlmWpZEjR6pdu3bZtm/btq1GjhwpY4xWrVqV/wUCAAAAAADAKW4JmU6fPi1Jeuihh3K8T+fOndPsCwAAAAAAgOuXW0KmMmXKSJL8/PxyvI+vr68kqXTp0vlSEwAAAAAAAFzHLSFTy5YtJUmbN2/O8T6bNm2SJLVq1SpfagIAAAAAAIDruCVk+uc//ylPT0+9/fbbOZr+durUKb3zzjvy9vbWiy++6IYKAQAAAAAA4Ay3hExNmjTRzJkzderUKTVr1kxLly5VSkpKunYpKSlatmyZmjdvrtOnT+uTTz5R06ZN3VEiAAAAAAAAnODlyoMNGDAgy/vr1Kmj7du367HHHlPJkiXVoEEDlS1bVpZl6eTJk9q2bZvOnTsnSbr77ru1bt06/f7775ozZ44rywQAAAAAAICLuTRkmj9/vizLyrKNZVkyxujcuXP69ddf09xnjLHbbN++Xdu3b5ckQiYAAAAAAIDrnEtDpipVqmQbMgEAAAAAAODm49KQ6dChQ648HAAAAAAAAG4Qbln4GwAAAAAAADc3QiYAAAAAAAA4jZAJAAAAAAAATnPpmky5kZycrPPnzysuLs6+qlxmqlSp4qaqAAAAAAAAkBduDZnOnDmjDz/8UEuXLtWuXbuUkpKS7T6WZSkpKckN1QEAAAAAACCv3BYyrV+/Xo8++qhOnz6d7cglAAAAAAAA3FjcEjKdPXtWXbt21dmzZ1W0aFENGjRIJUqU0Pjx42VZlmbPnq1z584pLCxM3333neLj49WyZUsNHDjQHeUBAAAAAADASW5Z+HvGjBk6e/asfH19tWHDBr333nt67LHH7Pv79++v4OBgffXVV9q/f7/atGmj33//Xbt27VLfvn3zvb7Dhw8rODhYtWrVUkBAgAIDA9WkSRNNnjxZsbGxTh07JSVFu3bt0vz58/X888+rSZMm8vX1lWVZsixLq1evztFx2rVrZ++T3T8AAAAAAAB3c8tIphUrVsiyLA0YMEB33nlnlm0rVKigH374QXfffbemTJmi+++/Xx06dMi32pYvX67evXsrOjravi02NlZhYWEKCwvT7NmzFRISourVq+fp+J9//rn69evnomoBAAAAAACuT24Jmfbv3y9Juvfee+3bUo+4SU5Olqenp/1zkSJF9OKLL2ro0KH6z3/+k28hU3h4uHr27Km4uDgVLVpUY8eOVfv27RUXF6eFCxfq008/VWRkpDp37qywsDAVK1Ys132kXn/K29tb9erVU2Jionbs2JGnmhs3bqx58+blaV8AAAAAAID84paQyTFKqGrVqvZtfn5+9valS5dUokSJNPs0btxYkvTHH3/kW10jRoxQXFycvLy8tHLlSjVv3ty+r0OHDqpRo4ZGjx6tyMhITZ06VePHj891H3Xq1NH06dPVpEkT1a9fX35+fho/fnyeQ6aAgADVrVs3T/sCAAAAAADkF7esyVS0aFFJUlJSkn1bYGCgvX3o0KF0+8THx0uSTp06lS81bdq0SWvXrpUkDRw4ME3A5BAcHKzatWtLkqZNm6bExMRc99O0aVMNGzZM99xzT5pgDQAAAAAA4GbilpDJsZ7RkSNH7NtKlCih8uXLS5JCQ0PT7bNu3TpJV0fu5IelS5fa2/3798+wjYeHh/r06SNJunDhQoZ1AgAAAAAAwE0hU7NmzSRJmzdvTnP7Aw88IGOM3n33Xe3bt8++fePGjZo8ebIsy1KTJk3ypabUIVajRo0ybde2bVt7+/fff8+XWgAAAAAAAG50bgmZ7r//fhlj9M0336S5/Z///Ke8vLx06tQp3XnnnWrSpInq1Kmj1q1b68KFC5KurpuUH3bv3i3p6igrL6/Ml6aqVatWun0K0p49e9SsWTOVKFFCfn5+qlSpkrp27arPPvssT9P5Ujt27FiW/6Kiolz0WwAAAAAAgJuNWxb+vv/++9WnTx8lJyfr4MGDqlatmiSpbt26+uSTTzRkyBAlJSVpy5YtafYbP368HnjgAZfXEx8frzNnzkiSKlWqlGXbkiVLKiAgQDExMTp69KjLa8mtkydP6uTJk/bPx48f1/Hjx/Xdd99p0qRJ+vrrr+11pHKrcuXKrioTAAAAAAAUMm4Jmby9vTV//vwM7xs4cKBatWql+fPn688//1RSUpJq1KihZ555xr7CnKtdunTJ3nYsSp4VR8h0+fLlfKknJzw8PNSxY0c99NBDuvvuu1WqVCldunRJW7du1cyZM7V7927t2rVL7du316ZNm1SlSpUCqxUAAAAAABQ+bgmZslOzZk298847buvPceU6SfLx8cm2va+vryQpLi4u32rKzjfffKMSJUqku71169Z6/vnnNXjwYC1YsEAnT57UyJEj001NzInsRmpFRUWpadOmuT4uAAAAAAC4+V0XIZO7+fn52dtXrlzJtn1CQoIkqUiRIvlWU3YyCpgcvL29NXv2bG3cuFF79+7Vt99+q+PHj+vWW2/NVR/ZTR0EAAAAAADIjFsW/s5MUlKSTp8+rdOnTyspKclt/RYrVszezskUuJiYGEk5m1pXULy8vDRw4ED75zVr1hRgNQAAAAAAoLBxe8i0a9cuDR8+XHXq1JGfn5/Kly+v8uXLy8/PT7Vr19awYcO0c+fOfK3Bz89PpUqVknT1impZOX/+vB0yXe8LY9epU8fePn78eAFWAgAAAAAAChu3hUwpKSkKDg7W3XffrY8++kh79uxRSkqKjDEyxiglJUV79+7Vxx9/rAYNGujFF19USkpKvtXjCGT279+f5SiqPXv22Nt5vWqbu1iWVdAlAAAAAACAQsptazL16tVLS5YskTFGknTnnXeqadOmKleunCTp5MmT2rx5s3bu3Knk5GRNnz5dJ06c0KJFi/KlnlatWmnt2rWKiYnRli1b1KxZswzbpZ521rJly3ypxVV27dplb1esWLEAKwEAAAAAAIWNW0KmhQsXavHixbIsS3fffbdmzZqlJk2aZNh28+bN+sc//qHw8HB9/fXXWrhwoZ588kmX19StWzf7inbz5s3LMGRKSUnRZ599Junqwtvt27d3eR2ukpSUpLlz59o/t2nTpgCrAQAAAAAAhY1bpsvNmjVLkhQUFKR169ZlGjBJUpMmTfTbb7+pZs2aMsZo5syZ+VJT06ZN1bp1a0nSnDlztGHDhnRtpk6dqt27d0uSRowYIW9v7zT3r169WpZlybIs9evXL1/qlKTQ0FBduHAh0/sTExM1aNAgu9YuXbpc9+tHAQAAAACAm4tbRjJt375dlmVpzJgxCggIyLZ9QECAxowZowEDBmj79u35Vte0adPUsmVLxcXFqVOnTho3bpzat2+vuLg4LVy4ME04FhwcnOd+5s+fn+bnbdu22ds//vijDh06ZP9cvXp1tWrVKk37BQsW6JFHHtEjjzyidu3aqWbNmrrlllt0+fJlbdmyRbNmzbKnypUtW1bTpk3Lc60AAAAAAAB54ZaQ6cqVK5Kku+66K8f7ONomJibmS02S1KBBAy1atEi9e/dWdHS0xo0bl65NUFCQQkJCVKxYsTz3079//0zvmzRpUpqf+/btmy5kkqTLly/ryy+/1JdffpnpserVq6eFCxeqWrVqea4VAAAAAAAgL9wSMlWtWlW7d+/WxYsXc7xPdHS0vW9+6tKliyIiIjRt2jSFhITo2LFj8vHxUfXq1fXEE0/ohRdekL+/f77WkJ0xY8aofv362rBhg3bt2qXTp0/r3Llz8vX1Vbly5dS4cWM9/vjj6t69uzw9PQu0VgAAAAAAUDi5JWR67LHH9Oabb+q///1vjhfP/vrrr2VZlrp3757P1V0Nst577z299957udqvXbt29tXyspKTNlmpXbu2ateurZEjRzp1HAAAAAAAgPziloW///nPf+r222/XzJkztXjx4mzbf/3115o5c6aqVauml156yQ0VAgAAAAAAwBluCZmKFy+uVatWqWHDhnrqqafUrVs3LV26VMePH1diYqKSkpJ0/PhxLV26VN27d1fPnj3VsGFD/fLLLypevLg7SgQAAAAAAIATXDpdLifrARljtHz5ci1fvjzLNmFhYbr99ttlWZaSkpJcWSYAAAAAAABczKUhU07XHnLHOkYAAAAAAABwH5eGTK+//rorDwcAAAAAAIAbBCETAAAAAAAAnOaWhb8BAAAAAABwcyNkAgAAAAAAgNNcOl0upxITE7V161bt3LlT586dkyQFBgaqbt26atiwoby9vQuiLAAAAAAAAOSRW0Om2NhYvfnmm/r00091/vz5DNuULFlSzz77rF599VX5+/u7szwAAAAAAADkkdumyx05ckT169fXu+++q3PnzskYk+G/c+fOadKkSWrQoIGOHTvmrvIAAAAAAADgBLeMZEpMTNSDDz6o/fv3S5Jq1aql/v37q1mzZipfvrwk6e+//9amTZs0f/587dq1S/v27dODDz6o8PBweXkVyKw+AAAAAAAA5JBbRjLNnj1bu3fvlmVZeuWVV7Rjxw6NGjVKbdq0UVBQkIKCgtSmTRu99NJLioiI0KuvvipJ2rVrl2bPnu2OEgEAAAAAAOAEt4RMS5YskWVZ6tatm9588015enpmXpCHh/7973+re/fuMsZoyZIl7igRAAAAAAAATnBLyLRz505J0oABA3K8z8CBAyVJO3bsyJeaAAAAAAAA4DpuCZkuXrwoSapYsWKO96lQoYIkKTo6Ol9qAgAAAAAAgOu4JWQKDAyUJB08eDDH+zjaOvYFAAAAAADA9cstIVPDhg1ljNFHH32U430+/vhjWZalBg0a5GNlAAAAAAAAcAW3hExPPfWUJGn16tUaMGCAYmJiMm0bGxurQYMG6ddff5Uk9erVyx0lAgAAAAAAwAle7ujk6aef1n/+8x+tX79eCxYs0A8//KAePXqoWbNmKlu2rCzL0smTJ/XHH39o8eLFOn36tCSpZcuWevrpp91RIgAAAAAAAJzglpDJsiwtX75cnTt31saNG3Xq1Cl99NFHGU6fM8ZIkpo3b65ly5a5ozwAAAAAAAA4yS3T5SSpZMmSWrdunT788EPVrl1bxpgM/9WuXVszZszQ2rVrVbJkSXeVBwAAAAAAACe4ZSSTg4eHh4YOHaqhQ4cqKipKO3fu1Llz5yRdvYpc3bp1VaFCBXeWBAAAAAAAABdwS8g0YMAASdKDDz6oJ554QpJUoUIFAiUAAAAAAICbhFtCpgULFkiSevbs6Y7uAAAAAAAA4GZuWZOpTJkykqRy5cq5ozsAAAAAAAC4mVtCpjp16kiSDh8+7I7uAAAAAAAA4GZuCZl69+4tY4w9bQ4AAAAAAAA3F7eETP3791fHjh21bNkyjR8/XsYYd3QLAAAAAAAAN3HLwt9r167VSy+9pNOnT+vNN9/UokWL1LNnT911110qWbKkPD09s9y/TZs27igTAAAAAAAAeeSWkKldu3ayLMv+OTIyUm+++WaO9rUsS0lJSflVGgAAAAAAAFzALSGTJKbIAQAAAAAA3MTcEjKFhoa6oxsAAAAAAAAUELeETG3btnVHNwAAAAAAACggbrm6HAAAAAAAAG5u+TqSKSQkRD/++KMOHz6s5ORkVaxYUe3atVOPHj3k7e2dn10DAAAAAADAjfIlZDp58qS6deumTZs2pbtv7ty5+te//qWlS5eqXr16+dE9AAAAAAAA3Mzl0+WSk5P1yCOP6I8//pAxJsN/Bw8e1P33368zZ864unsAAAAAAAAUAJeHTIsXL9bmzZtlWZaqV6+uOXPmaMeOHdqzZ4+WLFmie+65R9LV0U5Tp051dfcAAAAAAAAoAPkSMknSbbfdpk2bNql///668847FRQUpMcee0xr165V27ZtZYzRkiVLXN09AAAAAAAACoDLQ6bw8HBZlqXg4GCVKFEi3f2enp564403JEkHDx7UpUuXXF0CAAAAAAAA3MzlIdPp06clSY0bN860Ter7WJcJAAAAAADgxufykCkuLk6SVLRo0Uzb+Pv729vx8fGuLgEAAAAAAABu5vKQKbeMMQVdAgAAAAAAAJxU4CETAAAAAAAAbnxe+XXgjz/+WGXLlnVJu3/961+uKgsAAAAAAAD5IN9Cpk8++STL+y3LylE7iZAJAAAAAADgepcvIZMr11lyhFEAAAAAAAC4frk8ZAoNDXX1IQEAAAAAAHCdc3nI1LZtW1cfEgAAAAAAANc5ri4HAAAAAAAApxEyAQAAAAAAwGmETAAAAAAAAHAaIRMAAAAAAACcRsgEAAAAAAAApxEyAQAAAAAAwGmETAAAAAAAAHAaIRMAAAAAAACcRsgEAAAAAAAAp3kVdAEAAADXm9teDinoEpADhyZ2LugSAABAKoxkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jTWZJB0+fFjTp09XSEiIjh49Kl9fX91xxx3q0aOHhg4dKn9//zwfOyUlRXv27NGmTZu0adMmbd68WREREbpy5YokKTQ0VO3atcvx8WJjYzVjxgwtWbJEBw4cUEJCgipXrqzOnTtr+PDhqlq1ap5rBQAAQHqs0XVjYI0uACh4hT5kWr58uXr37q3o6Gj7ttjYWIWFhSksLEyzZ89WSEiIqlevnqfjf/755+rXr59Lat2/f78eeugh7du3L83te/fu1d69ezV79mx98cUXevjhh13SHwAAAAAAQE4V6uly4eHh6tmzp6Kjo1W0aFFNmDBB69ev1y+//KLBgwdLkiIjI9W5c2ddunQpT30YY+xtb29vNWzYUPXq1cv1cS5duqTOnTvbAdPgwYP1yy+/aP369ZowYYKKFi2q6Oho9ezZU9u2bctTrQAAAAAAAHlVqEcyjRgxQnFxcfLy8tLKlSvVvHlz+74OHTqoRo0aGj16tCIjIzV16lSNHz8+133UqVNH06dPV5MmTVS/fn35+flp/Pjx2rFjR66OM3nyZEVGRkqS3n33XY0aNcq+r3nz5mrXrp3atm2r2NhYjRw5UqtXr851rQAAAAAAAHlVaEcybdq0SWvXrpUkDRw4ME3A5BAcHKzatWtLkqZNm6bExMRc99O0aVMNGzZM99xzj/z8/PJUa2JioqZPny5Jql27toKDg9O1adGihQYOHChJWrNmjTZv3pynvgAAAAAAAPKi0IZMS5cutbf79++fYRsPDw/16dNHknThwgWFhoa6o7R0QkNDdfHiRUlS37595eGR8cOWeu2nb7/91h2lAQAAAAAASCrEIdO6deskSQEBAWrUqFGm7dq2bWtv//777/leV0YctUpp67lW48aN7SvhFVStAAAAAACgcCq0azLt3r1bklS9enV5eWX+31CrVq10+7jbrl277O3U9VzLy8tL1atXV0RERJ5qPXbsWJb3R0VF5fqYAAAAAACgcCiUIVN8fLzOnDkjSapUqVKWbUuWLKmAgADFxMTo6NGj7igvHUf4ExAQoBIlSmTZtnLlyoqIiNDp06eVkJAgX1/fHPdTuXJlZ8oEAAAAAACFWKGcLnfp0iV7u2jRotm2DwgIkCRdvnw532rKiqPe3NQqFVy9AAAAAACg8Cm0I5kcfHx8sm3vGA0UFxeXbzVlxVFvbmqVcl9vdiO1oqKi1LRp01wdEwAAAAAAFA6FMmTy8/Ozt69cuZJt+4SEBElSkSJF8q2mrDjqzU2tUu7rzW7qIAAAAAAAQGYK5XS5YsWK2ds5mVIWExMjKWfT1fKDo97c1CoVXL0AAAAAAKDwKZQhk5+fn0qVKiUp+yuqnT9/3g5uCmphbMcIo5iYGF24cCHLto4pb2XKlMnVot8AAAAAAADOKJQhkyTVqVNHkrR//34lJSVl2m7Pnj32du3atfO9row4apXS1nOtpKQkHThwQFLB1QoAAAAAAAqnQhsytWrVStLV0UFbtmzJtN2aNWvs7ZYtW+Z7XRlx1CqlredaYWFh9qirgqoVAAAAAAAUToU2ZOrWrZu9PW/evAzbpKSk6LPPPpMklShRQu3bt3dHaem0a9dOxYsXlyQtWLBAxpgM282fP9/e7t69uztKAwAAAAAAkFSIQ6amTZuqdevWkqQ5c+Zow4YN6dpMnTpVu3fvliSNGDFC3t7eae5fvXq1LMuSZVnq169fvtXq4+Oj4cOHS5J2796tKVOmpGuzYcMGzZkzR5LUtm1bNWnSJN/qAQAAAAAAuJZXQRdQkKZNm6aWLVsqLi5OnTp10rhx49S+fXvFxcVp4cKFmjVrliQpKChIwcHBee4n9QgjSdq2bZu9/eOPP+rQoUP2z9WrV08zPc5h1KhRWrRokSIjIzV69Gjt379fTz75pIoUKaLQ0FC9/fbbSkpKUpEiRfTBBx/kudab1W0vhxR0CciBQxM7F3QJAAAAAIA8KtQhU4MGDbRo0SL17t1b0dHRGjduXLo2QUFBCgkJUbFixfLcT//+/TO9b9KkSWl+7tu3b4YhU7FixRQSEqKHHnpI+/bt06xZs+wQzOGWW27RF198ofr16+e5VgAojAiibwwE0QAAANe3QjtdzqFLly6KiIjQiy++qKCgIPn7+6tEiRJq3LixJk2apPDwcFWvXr2gy5R0dZRTeHi4Jk2apMaNG6tEiRLy9/dXzZo19eKLLyoiIkIPP/xwQZcJAAAAAAAKoUI9ksmhatWqeu+99/Tee+/lar927dplugh3ajlpk1MBAQEaPXq0Ro8e7bJjAoUNo1ZuDIxaAQAAAG4shX4kEwAAAAAAAJxHyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMAAAAAAAAcBohEwAAAAAAAJxGyAQAAAAAAACnETIBAAAAAADAaYRMkg4fPqzg4GDVqlVLAQEBCgwMVJMmTTR58mTFxsa6rJ8VK1aoe/fuqlSpknx9fVWpUiV1795dK1asyHbffv36ybKsHP07dOiQy2oGAAAAAADICa+CLqCgLV++XL1791Z0dLR9W2xsrMLCwhQWFqbZs2crJCRE1atXz3MfKSkpevbZZzVnzpw0tx8/flzHjx/X0qVLNWjQIM2cOVMeHuR+AAAAAADgxlOoQ6bw8HD17NlTcXFxKlq0qMaOHav27dsrLi5OCxcu1KeffqrIyEh17txZYWFhKlasWJ76eeWVV+yAqUGDBho9erTuuOMOHThwQO+++67Cw8M1e/ZslSlTRm+//XaWx6pYsaJ++umnLNvceuuteaoTAAAAAAAgrwp1yDRixAjFxcXJy8tLK1euVPPmze37OnTooBo1amj06NGKjIzU1KlTNX78+Fz3ERkZqSlTpkiSGjdurN9++01FihSRJDVp0kSPPPKI2rZtq7CwME2ePFkDBgzIctSUt7e36tatm+s6AAAAAAAA8lOhnZu1adMmrV27VpI0cODANAGTQ3BwsGrXri1JmjZtmhITE3PdzwcffKCkpCRJ0ocffmgHTA7+/v768MMPJUlJSUl6//33c90HAAAAAABAQSu0IdPSpUvt7f79+2fYxsPDQ3369JEkXbhwQaGhobnqwxijZcuWSZJq1aqle+65J8N299xzj2rWrClJWrZsmYwxueoHAAAAAACgoBXakGndunWSpICAADVq1CjTdm3btrW3f//991z1cfDgQZ04cSLdcbLq5/jx41wdDgAAAAAA3HAK7ZpMu3fvliRVr15dXl6Z/zfUqlUr3T45tWvXrgyPk5N+qlWrlmG7s2fPqm3bttq5c6cuX76swMBA3XXXXerSpYsGDBggf3//XNWY2rFjx7K8PyoqKs/HBgAAAAAAN7dCGTLFx8frzJkzkqRKlSpl2bZkyZIKCAhQTEyMjh49mqt+Uoc22fVTuXJlezurfi5fvqzffvvN/vnvv//W33//rZUrV2rixIlavHixWrRokas6M6oBAAAAAAAgNwplyHTp0iV7u2jRotm2d4RMly9fzrd+AgIC7O2M+rEsS/fcc4+6dOmihg0bqly5coqPj9eOHTs0Z84cbdq0ScePH1enTp20du1aNWjQIFe1AgAAAAAAOKNQhkzx8fH2to+PT7btfX19JUlxcXH51o+jj8z6ef/991WiRIl0tzdv3lyDBw/Wq6++qrffflsxMTEaNGiQwsLCZFlWrurNbqRWVFSUmjZtmqtjAgAAAACAwqFQhkx+fn729pUrV7Jtn5CQIEkqUqRIvvXj6COzfjIKmBwsy9KECRP0xx9/6JdfftHWrVu1fv16tWzZMlf1ZjelDwAAAAAAIDOF8upyxYoVs7dzMgUuJiZGUs6m1uW1H0cfeenH4bnnnrO316xZk6djAAAAAAAA5EWhDJn8/PxUqlQpSdlfUe38+fN2AJTbhbFTjwzKrp/UU9XyugB3nTp17O3jx4/n6RgAAAAAAAB5UShDJul/gcz+/fuVlJSUabs9e/bY27Vr185TH9cex9X9OOR2DSYAAAAAAABXKbQhU6tWrSRdnaa2ZcuWTNulnnaW2zWOqlWrpooVK6Y7TkZ+++03SdKtt96q2267LVf9OOzatcvedvQLAAAAAADgDoU2ZOrWrZu9PW/evAzbpKSk6LPPPpN0deHt9u3b56oPy7LUtWtXSVdHKm3cuDHDdhs3brRHMnXt2jXPI5Jmzpxpb7dt2zZPxwAAAAAAAMiLQhsyNW3aVK1bt5YkzZkzRxs2bEjXZurUqdq9e7ckacSIEfL29k5z/+rVq2VZlizLUr9+/TLsZ+TIkfL09JQkDRs2THFxcWnuj4uL07BhwyRJXl5eGjlyZLpjbNy4UVFRUZn+LsYYvfrqq1q1apUk6e677871qCsAAAAAAABneBV0AQVp2rRpatmypeLi4tSpUyeNGzdO7du3V1xcnBYuXKhZs2ZJkoKCghQcHJynPoKCgjRq1ChNnDhRYWFhatmypcaMGaM77rhDBw4c0KRJkxQeHi5JGjVqlGrUqJHuGD/++KMmTpyoBx54QPfdd5/q1KmjEiVKKCEhQREREZo7d67++OMPSZK/v78+/fRT1mcCAAAAAABuVahDpgYNGmjRokXq3bu3oqOjNW7cuHRtgoKCFBISomLFiuW5nwkTJujUqVOaO3euwsPD9eSTT6ZrM3DgQL311luZHiMhIUHLli3TsmXLMm1TpUoVffnll2rSpEmeawUAAAAAAMiLQh0ySVKXLl0UERGhadOmKSQkRMeOHZOPj4+qV6+uJ554Qi+88IL8/f2d6sPDw0Nz5szRY489plmzZmnz5s06c+aMSpcurSZNmui5557Tgw8+mOn+/fv3V7ly5bRhwwZFRETo1KlTOnv2rLy8vFS6dGk1bNhQXbp0Ua9eveTn5+dUrQAAAAAAAHlR6EMmSapataree+89vffee7nar127djLG5Lj9Qw89pIceeii35alq1aoaMmSIhgwZkut9AQAAAAAA3KHQLvwNAAAAAAAA1yFkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiYAAAAAAAA4jZAJAAAAAAAATiNkAgAAAAAAgNMImQAAAAAAAOA0QiZJhw8fVnBwsGrVqqWAgAAFBgaqSZMmmjx5smJjY13Wz4oVK9S9e3dVqlRJvr6+qlSpkrp3764VK1bk+BhJSUn6z3/+o9atW6tMmTIqUqSI7rjjDj333HP6888/XVYrAAAAAABAbngVdAEFbfny5erdu7eio6Pt22JjYxUWFqawsDDNnj1bISEhql69ep77SElJ0bPPPqs5c+akuf348eM6fvy4li5dqkGDBmnmzJny8Mg89ztz5oweeughbd68Oc3tf/31l2bNmqUFCxZoxowZGjRoUJ5rBQAAAAAAyItCPZIpPDxcPXv2VHR0tIoWLaoJEyZo/fr1+uWXXzR48GBJUmRkpDp37qxLly7luZ9XXnnFDpgaNGigr776Sps2bdJXX32lBg0aSJJmz56tV199NdNjJCcnq3v37nbA9Oijj2rFihX6448/NH36dJUtW1YJCQl67rnncjUyCgAAAAAAwBUK9UimESNGKC4uTl5eXlq5cqWaN29u39ehQwfVqFFDo0ePVmRkpKZOnarx48fnuo/IyEhNmTJFktS4cWP99ttvKlKkiCSpSZMmeuSRR9S2bVuFhYVp8uTJGjBgQIajphYsWKB169ZJkp5//nl99NFH9n1NmzbVgw8+qEaNGik6OlrDhw/X7t275eVVqB9eAAAAAADgRoV2JNOmTZu0du1aSdLAgQPTBEwOwcHBql27tiRp2rRpSkxMzHU/H3zwgZKSkiRJH374oR0wOfj7++vDDz+UdHW9pffffz/D4ziCqsDAQE2ePDnd/dWrV9fYsWMlSfv379e3336b61oBAAAAAADyqtCGTEuXLrW3+/fvn2EbDw8P9enTR5J04cIFhYaG5qoPY4yWLVsmSapVq5buueeeDNvdc889qlmzpiRp2bJlMsakuT8yMlK7d++WJPXo0UP+/v4ZHqdfv372NiETAAAAAABwp0IbMjmmngUEBKhRo0aZtmvbtq29/fvvv+eqj4MHD+rEiRPpjpNVP8ePH9ehQ4cyrDW745QvX15BQUF5qhUAAAAAAMAZhXbRHsfIoOrVq2e5dlGtWrXS7ZNTu3btyvA4OemnWrVqeT5OZGSkjh49qpiYGAUEBOS43mPHjmV5/9GjR+3tqKioHB/3epAUfaagS0AOZPccdBWeDzcGdz0fJJ4TNwqeE7gWrxtIjXMErsU5Atdy53nCWak/czuW4LkRFMqQKT4+XmfOXD0RVKpUKcu2JUuWVEBAgGJiYtKELDmR+gmcXT+VK1e2t6/tJy/HMcbo2LFj9jS8nEhdQ3aaNm2a47ZATlX+pKArwPWE5wOuxXMC1+I5gdR4PuBaPCdwrRv1OXH69GnddtttBV1GjhTK6XKXLl2yt4sWLZpte8dooMuXL+dbP6lHHF3bj6uOAwAAAAAAkF8K7UgmBx8fn2zb+/r6SpLi4uLyrR9HHxn146rjZCe7kVrx8fHas2ePypUrpzJlymQ5zRD5Jyoqyh5JtmnTJlWoUKGAK0JB4vmAa/GcwLV4TiA1ng+4Fs8JXIvnxPUhKSlJp0+fliTVq1evgKvJuUKZEvj5+dnbV65cybZ9QkKCJKlIkSL51o+jj4z6ufY4qX/OzXGyk91UPOnqGla4flSoUCFHjxsKB54PuBbPCVyL5wRS4/mAa/GcwLV4ThSsG2WKXGqFcrpcsWLF7O2cTCmLiYmRlLOpdXntx9FHRv246jgAAAAAAAD5pVCGTH5+fipVqpSk7FeXP3/+vB3c5GZhbCntyKDcXLnt2n7ychzLskicAQAAAACA2xTKkEmS6tSpI0nav39/lpcD3LNnj71du3btPPVx7XFy209ejlO5cuU0i4ADAAAAAADkp0IbMrVq1UrS1ellW7ZsybTdmjVr7O2WLVvmqo9q1aqpYsWK6Y6Tkd9++02SdOutt6abd+moNbvj/P3334qMjMxTrQAAAAAAAM4otCFTt27d7O158+Zl2CYlJUWfffaZJKlEiRJq3759rvqwLEtdu3aVdHWE0caNGzNst3HjRnsEUteuXWVZVpr7g4KC7NFNixcvVmxsbIbHmT9/vr3dvXv3XNUKAAAAAADgjEIbMjVt2lStW7eWJM2ZM0cbNmxI12bq1KnavXu3JGnEiBHy9vZOc//q1atlWZYsy1K/fv0y7GfkyJHy9PSUJA0bNkxxcXFp7o+Li9OwYcMkSV5eXho5cmSGx3nppZckSefOndPo0aPT3X/gwAG98847kq5eAY6QCQAAAAAAuFOhDZkkadq0aSpSpIiSkpLUqVMnvfPOO9q4caNCQ0P13HPP2WFOUFCQgoOD89RHUFCQRo0aJUkKCwtTy5YttWjRIoWFhWnRokVq2bKlwsLCJEmjRo1SjRo1MjxO37597SlwH330kR5//HH99NNP2rRpk2bMmKEWLVooOjpaHh4emj59ury8vPJULwAAAAAAQF5YxhhT0EUUpOXLl6t3796Kjo7O8P6goCCFhISoevXq6e5bvXq1PYWub9++aaarpZaSkqLBgwdr7ty5mdYxcOBAzZo1Sx4emed+Z86c0UMPPaTNmzdneL+vr69mzJihQYMGZXoMAAAAAACA/FCoRzJJUpcuXRQREaEXX3xRQUFB8vf3V4kSJdS4cWNNmjRJ4eHhGQZMueHh4aE5c+YoJCREXbt2VcWKFeXj46OKFSuqa9eu+uGHHzR79uwsAyZJKl26tNavX6+PP/5YrVq1UqlSpeTn56fbb79dgwcP1pYtWwiYAAAAAABAgSj0I5kAAAAAAADgvEI/kgkAAAAAAADOI2QCAAAAAACA0wiZAAAAAAAA4DRCJgAAAAAAADiNkAkAAAAAAABOI2QCAAAAAACA0wiZAAAAAAAA4DRCJgAAAAAAADiNkAkAAAAAAABOI2QCAAAAAACA0wiZAAAAAAAA4DRCJgCA2xhjCroEADcoYwznEAAArnOETACAfJecnCxJsizLvo0Pi3A1Y4z9XMPNJSUlRZZlybIsHmMA6aSkpBR0CXCDlJQUXgNuAIRMAFwuKSmpoEvAdcbT01OS9MUXX2j06NGS0gZOgCtYliVPT09dvnxZFy5cKOhy4EIeHlffsk6YMEG9e/dWSkoKQfUNig+IcLWUlBT7HHHlypUCrgb5ycPDQ56entq/f78SExMLuhxkgpAJgMt5eXlJkubOnatVq1YVcDW4HiQnJ6t///565plntHXrVl26dKmgS8JNxhE4TJ06VTVr1tSXX35ZwBXBlZKTkzV9+nS99tpr+u6773Tu3DmC6htQSkqK/aVDdHR0AVeDm4WHh4cSExP17LPP6l//+pckRjbdrBITEzVmzBgFBQVpwYIFBV0OMkHIBMDloqKiVLp0aQ0aNEixsbGSmBpVmBlj5OnpKV9fX0lSXFycihUrVsBV4WZjWZYOHz6sUaNGKSoqShUqVJDEuedm4enpqfj4eElSlSpVdPDgwQKuCHnh4eGhLVu26N5779V3330nib9ROC82NlYjRozQ7Nmz9fPPP0v63+hH3FzCw8M1efJk+fj4yNvbu6DLQSb46wPgcsWKFVPRokUlSbt37y7ganC9uOeee+Tj46OtW7dq27ZtBV0ObjLGGAUGBqpt27aSpB9++EES0zJvBo4RCR07dpQk7d27154mwWiFG8upU6fUu3dv/frrr9qzZ48k/kbhPH9/f8XExEiSbrnlFh07dqyAK0J+adq0qWrXrq0rV67YnzF4Hbj+EDIBcLkLFy7Yowh27dql+Ph43kTexLJ7cXc89l5eXrpy5YoCAwN15swZd5SGQsSyrDTrcsTExDAt8waR3Ro9jsc0ICBAdevWlSRGK9ygjDEqU6aMfH19dfToUXu0M5BXjvNHu3btJElbt25VkSJFJDFK7mZ06dIl1atXT5K0ceNGxcfH8zpwHeIRAZArOfm2oFKlSipVqpSkq1Oj/Pz8+JbhJpWcnJzti7vjTd69996rgIAARUVF6ezZs5L49gk5k5ycnObDQkYfHIwxKl68uGrVqiVJOnjwINMybwCp1+jJLhQsVaqUzp07J+l/F5jgHHJjKVeunMqUKaOEhASdO3dO/v7+BAHIUnYhtOP8ceutt6ps2bK6dOmSfv31V0mMkruR5PSiQcWKFbOnyfn6+ioxMZFzyHWIkAlAjjguDZ46UMjozb3jtvbt20uSfv31V506dYpvGW5Snp6eio2NVf/+/fXhhx/aV/RK/dxwvMmLj4/XXXfdJUkKDQ2VxCgEZM+xppdlWfbQ+Kw+ONSvX18+Pj7auXOnduzY4a4ykUceHh46fvy4Hn30UfXr10+bNm3KsF1KSorKlCljT4fcvHmzvT8KnuM9QlYcrwuOx/D333/XsWPHCAKQKcf5X/pfCJ1ZoFCyZEmdPn1afn5+iouLy7Itrj+OiwZt3LjRnvp4Lcc55r777pN09b1kTEyMLMvisb7O8MoMIEcclwY/dOiQhg4dqsjISPvNfeoT+7Vv+EuWLKm//vrLrbXCfQ4dOqRHHnlECxYs0Kuvvqphw4bp/PnzGX7wq1ixohISEiTJ/haKUQjIjmVZOnXqlJ588kndeeedevPNN+1FnzMKM318fHTlyhUVL17cHvWC61dCQoJeffVVLV26VN9++62eeeYZbdy40b4MueMxdlw9qkKFCvL09NThw4dZ/Ps64niPkJSUpMuXL0tKPwLl2teF4sWL69ChQ+4qETcgy7L0xx9/qGPHjhoxYoT+/vvvTEPJJk2a6O6771Z8fLx27tzp5krhrH379unuu+9WixYtNGrUKO3du1dS2s8YjsCxSJEiCgwMlL+/vzZu3CiJUWvXG0ImADn29ddf6/bbb9cnn3yivn376vvvv5eU9sTueDFwzI0/cOCAfRuBws2natWqmjhxolq1aqVLly7piy++UL9+/bR169Y07ZKTk+Xj46N7771Xkuyh7IxCQE6Ehobqzz//lCS99957ev755xUVFZUm6HacZzp06KAiRYroxIkT9tpfnHuuX76+vvr44481fPhwVapUSfv27dOQIUP0wQcfSFKax9jb21vly5e3p086rliJ68PkyZPVqFEjjRs3TtL/PhA6XDvS+fDhw3YQxd8oMnLu3Dk9//zzCg0N1fz589WvX780F5RJHUCcO3dO1apVkyRFRETo8uXLBA83kCNHjiggIECS9J///EfPPPNMusfa8XjXqlVL586dU3R0NJ8xrlO8uweQY82aNdPLL7+sokWL6o8//tBzzz2nmTNnpmnjeEEvVqyYvUDrypUrJREo3KgcL9wZvYBblqXGjRtrzpw5GjRokCRp+fLlGjx4sH15aunqY2+MUdGiReXj46PY2FiFh4e75xfADcvx5rFnz5769ddf1bFjR8XFxemnn35S37599dNPP0m6+jx0nHuSk5NVv359SdJvv/0miXNPQTLG2OeOjKYzJCcnq0iRInrzzTc1bdo0+fn5aceOHXr55Zf13nvv6fDhw5L+t15Hhw4d5Ofnp8jISO3atSvT48K9du3apTFjxmjHjh2aMWOGRo8ebU9XTT0aTbq6gHvDhg0l8f4AWQsMDNR///tf9e7dW35+flq5cqWee+45LVmyRFLaLzkDAwPtBb89PDzk5+fHueEG4HiMOnbsqJ9++km9e/dW8eLFFRYWpsGDB2vBggWS/vc6b4zRHXfcoWbNmknidf56xaMBwJb6W4LU246fK1eurLffflvvv/++brvtNkVFRWnEiBH617/+paioKEn/ezNZrFgxe06841tnXuxvLI4PdY4X7mtfwFM/njVq1NCMGTP01ltvqVixYgoPD1f//v01Z84cXbp0yX5zUKNGDV25ckWxsbFc/QWS0oYQqW+T/vcBwrEez5w5c/TKK69IklatWqX+/ftr4cKFafa99dZbFR0dneY4fMNZMJKSkmRZljw8PJSQkKDk5GTFx8fb96deb6VYsWLq3r27Pv/8cz3wwAOSpLfeektDhw7VhQsX7Cm2ly9fVmBgoPz8/OwpMYxWKFjGGNWpU0c///yzevfuLUn66KOPNHjwYB04cMB+7XCMWipevLi9fl9ycrJSUlJ4HSikrn3fea2UlBTddttt+uCDD/TGG29IktatW6e+ffvqyy+/tJ9Hjum1jnNHaGioPbWO51bBy+hvPKPX+WLFiun999/XxIkTJUnr16/XgAED9H//9386ffq03T42NlYBAQHy8PDQqVOn7Cm6uH4QMgGQ9L8PA44X5NQjA641cOBAffrpp2rTpo2uXLmiSZMm6dlnn9WZM2fsN5MVKlSwRxNs3bo1y+Ph+uJ4M+BYhPGHH35QcHCwhg4dqkcffVRffPGFzpw5k+aNgXR1LZxx48bpk08+0Z133qnz589rzJgxevnll+02jRs3Vrly5XT69Gl7Hj0Kr9QhRExMjCIiIvTXX3/pyJEjdhtjjH1eqVKlil577TV98MEHuv322/X3339ryJAhmjhxov1hw9vbW/fff78kac2aNZL4htPdHH/vjnPI/Pnz1bNnT3Xp0kWNGjXSc889p23bttkfDFNfPfCxxx7TvHnz1KFDByUnJ+uHH35Q//79tWLFCklXR9RalqX4+HglJiba+yN/5eT/uGPHjvrkk0/02GOPydfXV5s2bVKfPn301VdfSbo6fS45OVmlSpVS69atJUlhYWHy8PDg/UEhY4xJ877T8WWU48tJB8fzIjAwUKNGjdInn3yi+vXrKz4+XqNGjdLLL78s6er7D+nqa0pAQICKFSum7du3pzkG3C/1RYMsy9LRo0e1atUqbdiwQZGRkWkWaHc8TqVKlbJnSrRq1UqSNHr0aL344ov2a0vp0qVVsWJFpaSk6NSpUypatChh4vXGACjUkpKS0vy8cOFCM2nSJPPKK6+Yd9991+zZsyfN/cnJyfb20aNHzcMPP2wCAgKMZVnmkUceMcuXLzfGGHPlyhXz8ssvGy8vL1OzZk1z+PDh/P9lkKU//vjD7N692xiT/nF3SElJsbc3b95s2rRpYyzLSvevbdu2Zs2aNZnuu3XrVtOkSRPj7e1tLMsyQ4YMMVu3bjVnzpwxd9xxh/Hx8THjx49P83xC4XHt4z5jxgzTuHFjU6dOHVOkSBFTpUoV8/TTT6c5/6SkpKR5jq1cudI0adLEWJZlvLy8TK9evcy5c+eMMca89dZbxtvb21SrVs1s377dPb9UIfDdd9+Z7777ziQmJuao/cqVK82dd96Z4TmkevXq5uWXX063j+Pc9Ndff5nJkyfb7cuVK2eWLVtmrly5YgYNGmQsyzLt27d36e+H9JKSktL83Z06dcokJCSYixcvpmmXkpJiP3Z///23mTlzpvHw8DCWZZmiRYuamTNnmvj4eGOMMQkJCeaVV14x3t7e5vbbbzf79+933y+EApf6/UdsbKyZNGmS6dy5s2nXrp1p2rSpCQ4ONocOHbLbpKSkpHnNiIiIMHXr1jV+fn7GsiwzbNgws2HDBvs+xzljxYoVxpj0rzdwXkJCgjHGZPlakPr//eLFi2bUqFHmtttuM5UqVTKWZZkyZcqY5s2bm82bN5srV64YY9I+1ikpKebgwYOmYcOGxt/f31iWZQYOHGjWrVtnjDHmP//5j7Esy9xyyy1m3759+fWrIo8ImYCbVFhYmImLizPGpP3wn1rq25cuXWp/GPDx8bFfpG+99Vbz5ptvptvX8SIQFRVlJk2aZLcvUaKECQkJMcYY8+GHHxrLskydOnXMwYMHXfwbIqfi4uLMiy++mOMPZZcuXTJvvPGG/ZiWKVPGPPLII6ZLly6mR48eplixYsayLNOsWTP7TVzqN42O59Wff/5pRowYYSzLMp6enqZWrVpm3759pm7dusayLPPCCy+k2xc3tm+//dbcf//9ZseOHcaY7N/c//zzz2lCCMeHBi8vL2NZlmnUqJF9PnFIfd7au3ev6d69u71/t27dzLZt28yPP/5oP3f5AOu8xMREM3bsWGNZlmnQoIE5cOBAlu3Pnj1rxo0bZz8ut99+u3n++efNmDFjzJQpU0zNmjWNr6+vsSzLfPbZZ1kea+rUqeauu+4ylmWZypUrmzfffNM88cQTxsfHx3Ts2NFERUW58ldFKqnPzdu2bTMDBgwwHTt2NNWrVzetWrUy77zzjomMjDTGZPy3vmDBAtO4cWNjWZYJCAgwL730kv14ffDBB3bYyJdQN4f58+eb9evX57j93LlzTdmyZTMMoevXr29mzpxpjEl7znc8z7Zs2WK/r/Hz8zM1a9Y0ERER5tSpU6Zdu3bGsiwzYsQIl/5+uOrtt982ZcqUMZcuXTLGZP86P2/ePFOyZEn7sS1durTx8PCwv6C+++67zaxZs4wxGT/WO3bsMGPGjLHfG9SoUcPs2LHDfPrpp8bLy8tUqlQp3ZeeKHiETMBN5q+//jJNmjQxJUuWNAsWLMi2/eHDh03v3r3tk3+1atXMPffcY5o3b26qV69u3/7222+bU6dOGWMyDq0++OAD06BBA/sYr7/+utmxY4f9YXHt2rWZ7ov8dfnyZfPoo48aPz8/4+XlZb7++mtjTMbhzuXLl80rr7xiB42DBg0y69evT/NB7uuvvza33XabsSzLtGjRIts3GmPGjDG33367sSzLNG3a1FSoUMFYlmXuvPNO+9sw3PgWL15sny+ye3N/6dIlM2XKFFOkSBFjWZapUaOGeeutt8znn39ufv75ZzN9+nT7w0fLli1NaGioMSbtc8xxLjl9+rR57bXX7L4rV65s5syZY0qUKGEsy7LPg5x78i45Odl8+eWXdjA0efJk+0uMayUkJJh///vfJiAgwBQpUsS89NJLZvfu3eb8+fN2m507d9qjkSpVqmS2bt2aYZ/GXA24NmzYYOrVq2csyzKlSpWyH9sKFSqkG1GDrEVFRZl3333XhIWF5aj92bNnzXPPPWf/fTlGpzr+BQUFpRstmPpvLTw83LRv395u37lzZ3PixAmze/du+0Om48sK/kZvTJcuXTIPPvigsSzLPP300+bMmTNZtj9w4IB55pln7OdEw4YNzT//+U8zduxYM378eFO5cmX7PscIpcyMGDHCVKtWzViWZZo3b24mTJhgOnToYDw8PMzgwYNNbGysK3/VQm/x4sX2qKKRI0caYzJ/73fq1Cnz8ssv249lmzZtzKeffmpWrFhh9u7da5YuXWrq1atnPDw8TGBgoAkPDzfGZD466uWXX7Y/lzRr1swMHz7c/ozBqLXrDyETcJNZv369/UbwscceM8eOHTPGZHzi3bVrl+nWrZuxLMsUL17cvPLKK2bjxo3m6NGjxhhjjhw5YgYMGGAsyzK33XabmTFjRrpjOI6blJRktm3bZu644w77g0j79u3NLbfcYnx8fMwHH3yQj781MuN4fH799VfTsGFDeySCY2jytc+LuXPnmuLFi5uKFSuaGTNmpPlg6HDu3Dnz4IMPGk9PT2NZlnn11VeNMek/IDiOHRMTY3788UdTsmRJ+w2Bp6enadSoESPcbiJnz541HTt2ND4+PqZy5cpm1apVxpiMw8yvvvrKVK5c2fj5+Zlhw4aZvXv3pgstvv76a1O8eHHj4+NjHn30UfvDQmYfRKdMmWLq1KljLMuyR9t5e3ubf//733x4dYGzZ8+agQMH2qNPMgspvvvuO+Pp6WnKly9vPvzwwwzPIX/99ZcZMGCAHWYPGDDAnD17Nsv+t2/fnuYLER8fH+Ph4ZFupBsyt2/fvjRfHDkCusz+Pn788Uc73LMsyzz22GNmwoQJ5sMPPzT/+Mc/TM2aNY1lWeaee+4xf/75Z6b9HjlyxPzjH/+wz//33Xefee2110zjxo2Np6enmTRpUr78vnCPuLg489ZbbxnLsoyvr6/573//m2XwMHjwYGNZlilfvryZMmWKOXTokImOjrbbrF+/3nTo0MGemu94T5qa43Xl4sWL5vvvvzfFixe3R686zv9t27bNl9+3MDt8+LB59tln7XPCrl27jDEZv87PmDHDlChRwpQpU8ZMmDDBnDhxIl27RYsWmRo1ahjLskzr1q0z7NOxT0xMjPn1119NxYoV7dcAx+eN4OBgF/+mcBYhE3ATckxRqlChgnnvvfcybJOYmGj69+9vfHx8TLNmzcz3339vBw+phYWFmcDAQGNZlmnVqpXZuHGjMSZ9OOH4eePGjWbo0KF2kOB4IXK8iWRqVMEZO3asPWTZ8Xhc+zg+9dRTxrIs89Zbb6X7cHj58mWzcOFC07x58zTfZAcGBtpr52T0+Do+wHz//ffm0Ucftffz9PS0110gBLixOZ5HixYtMmXKlDEeHh6me/fu9jeSqR/fo0eP2s+BV1991Zw4cSLNsRITE83BgwfNuHHj7DeQgYGBdsidWZiZkpJiNm3aZO644w77w2zqUVWce5y3bt06eyTiiBEjzIULF9K1+fjjj03JkiXNmDFj7A+Ojsfs/PnzZtasWaZWrVppziE+Pj5m6dKl2X4LHRcXZ4KDg03RokXttTj++9//uv4XvUklJyfb00sbNmxofv3110zbbt682bRo0cL+8PfDDz+Y06dP2+sqJSUlmbVr19of6IcPH57ub9mY/z328fHxZurUqfYoiCJFitgjGf/973/bx8SN6a+//jJt27a1Q8TUayql9t577xnLssxdd91llixZkubLBcdzJSwszHTq1Mle02vixImZjpx07LN8+XLTuXNne0qVp6enKV26tNm7d6+Lf1MsW7bM/tLy/vvvz7BNRESEPeJ0ypQp9nqJDvHx8Wb79u2mV69eaT4v/N///Z8xJuu1nkJDQ80jjzxiLMuynyP//Oc/063biIJFyATcRBxv0E+cOGEPN27Tpo09BDX1G/jTp0/bc9m/++67dAHT6dOnzYcffphmylzRokXN8OHDM/zgeK0hQ4bYH0YcbzpQMFLPa3dMW6hQoYI5cuSIMebqG3vHm/uoqCjz/vvvpzvGjh07zJNPPmk/nmXKlDH9+vUzVatWtYfIZyb18yQmJsb06NHD3HLLLcayLDN37lwX/qYoKKkf4169ehlPT08TGBho5s2bZ4xJH2a2atXKdOnSJd1IiujoaDNz5kz7m03HeceyLNO4cWN77ZaMwgjHbRs2bDD9+/e3969Xr16mH1CQOzExMeb111+3R4v9+OOP9mPnOIecPHnSrFy5Mt2+mzZtMg888ECaaVazZs2yLy7wwAMP2OekrCQmJpq5c+eaKlWq2CNyjGGaRE6Fh4fbI8hGjBiR4ZpWMTEx9oe4nj17Zjid8dKlS+bbb7+1pyqVKlXKfPHFF9kGRQsWLLCn1jtC5BYtWrjs90PBSEpKMl999ZX99z19+vR00+GTkpLMSy+9ZIoXL25mzZqVLkg4duyYeeutt0zp0qXThNC333672bx5c4b9pn7tOX/+vOnSpYsdZFarVs1+/wvnOf6vL168aMaMGWOHxN99950xJn0w1KVLF/Paa6+lOzefOHHC/Otf/7JHnzkeY8d7U0f7rM7pZ86cMb1797ZDbs4h1x9CJuAm4zgpv//++/Y0uFGjRtn3p35B/uKLL8zixYvTHeOnn36yv5FyfEi7++67jWVZpm7duubbb79Nd6xr+79w4YL573//a3+T0a5dO3P8+HFX/qrIodQv1NOnT7eHGj/33HNp2jkez2sf1//85z/2mzbLsszo0aPt+x544AHj4eFhfH19zY8//miMyfzb6NRhl7+/v/Hy8rIX9uQD4o3P8bj//vvv9hvGFi1amL///tsYc/UxTj3FwbGWl8OOHTvM/fffbz/PatWqZdasWWPefvtt4+XlZQICAsyYMWNyVEtycrL9Iblly5Y5Ci+QOcfjlpycbHbt2mXq169vLMsyjz76aIajV1J/aZGSkmKmTJliP66+vr5m8uTJ9v2O1yrLssxHH32U5TptjnPT8ePHTdeuXY1lWebxxx/PcBQuMudYJ6VSpUpmyZIl6c75UVFR5qmnnsr0w/369evTfOngCIu6deuW6bS51Of4vXv3miZNmthhV7t27eyp/bhxnTp1yjz99NPGsq5e8CX1Wl2Ox3/Pnj3m999/T7fvsmXL7PDRMdVt7ty59hemL7zwQoZTb689/smTJ83kyZPt59YPP/yQ5n44x/H/uG7dOtOxY0djWZa544477PuvvcrktefmFStWpLnYxwMPPGD+/PNPM3fuXPuLaccSDNldBTk6Oto899xz9lUqHVdPxvWBkAm4yTi+SUhKSjJNmzY1lnX1yg2OACD1C+21b+YTEhJMcHBwmhEEH374oTHm6tB5x7SGJ5980pw+fdoYk/00J8eV56pWrWpiYmJc9nsie8nJyeneWJ09e9b06NHDeHl5GV9fX3tB9mtfzB3DjqdNm2Y/Hzp16mRfNcwh9YfH1N8kZfe8cIyoGjJkiDO/Iq4T1z5/Ro0aZXx9fU2RIkXsqTAZSU5ONikpKWbWrFn2FLciRYqkmeZ75MgRe+RbUFCQffWizN6AOm5funSpPVrTETIxlD53rr18vcOXX35p/93PnTs3y6kNc+fOtRd4fvzxx9Ndme7777+3g+86deqkO8dkxrGe4BNPPGGM4UNkbhw/fty+eMOTTz5pXyEu9WO9bdu2dKOcEhMTzfjx49N86TB27Fgzd+5ce5rS+++/by5fvpxp347HKTIy0n6/Ub58eXtNLv5GbzyOc25iYqL55Zdf7CUWMpoy62ifelSMY4kFR/C5aNEiu+2wYcOMZVnG39/fhISE5Oj5sX37dns6lyOwgPOufc2dPHmyfYGOKVOmZNjGmKt/8/Hx8ebf//63/ThXq1YtzVTnrVu3pln/LfVI+4w4ngeffvqpsayr68byZdL1hZAJuEmkPhE73sQtW7bM/paxb9++9tSUjN6MnzhxwvTs2dM+wQ8aNCjdQqyO9RmqVq1qPvnkkyzrcbwArFq1yl4HyLEQMPJf6ufD4cOHzYwZM8wnn3xili1bZl5//XV7TZSspjHu27fPbtevXz/7A0dycrL97dTWrVvtb7EtyzIff/xxuv5TS0lJMbGxsaZLly7GsizTo0cPrv5yA3OERA6OUUv79u0zjRs3Nh4eHqZmzZr2lIWMnhdbtmyxv9ns0qWL2blzp32fY5pbnz597MCoV69e9v2ZfeBISUkxa9asMRUqVDBeXl6s25MHqV8nwsPDTXBwsBk6dKgZOHCgmT59uj2aqVGjRpmue3L8+HF7VNtTTz1lfwhIPartzJkzxs/Pzz6HvPzyy+lGuaXmOPc4Au7KlSvb6wQhc9euV/LJJ5/YH94/+eQT+28t9cU8jPnfF1dbtmwxjRs3th+nhx9+2Ozbt88Yc3V6XatWrYxlXb3qU0YjVTLy008/2R9SHVNucOPI6Hx+5coVM2HCBGNZV9fS++WXX7I8xtixY+3n1IgRI9JcLTIxMdHMmDHDnjL98MMP52hE/JUrV+wp1//6178yrRU5k/r/LiUlxezbt8/ExMSY9evXm759+9pfQDuuKpjR//WGDRtM9erVjZeXlxk4cGCaEbCO9o41tSzr6kUGHP1lxHH77t277SlzjlFruD4QMgE3uJSUlDQfBiIiIsxXX31lvv/+e3PkyBF7+kmVKlXM/PnzM9zfGGM+++wzU6JECVOiRAnzwQcfpHmj6fg3ZMgQ+wXg3nvvtRd7zuob5F9//dWetucYNQP3SEhISLN4suOft7e3KVmypPH09DQeHh72rtaK7AAAbaZJREFUJd6vfWMwceJE+1tmx4LvDo7H/NtvvzWWZdkjEYKCguxRblk9Lxxrszz55JOu/JXhRqnf/P3xxx/mqaeeMs2bNzc1atQwzz//vGndurUJDAw0Pj4+ZtCgQen2T05ONomJieaJJ56wv9l0jFJyfCB2DL13XOXS09PTlClTxixZssQ+RmZ17d69215M1LHAMaMkcufay9c7Fll1jFJz/Pzvf/87w7B4xYoVxrKurt+0fPnyDPvYvn27KVWqlClXrpx9LslqQWqHfv362SMoExISeGyzkHqkmSNMiouLs98ftGnTJtM1b4y5utaN45xdtWpV89lnn9n3paSkmIsXL5qRI0emmVKdk9HOGzZsMP7+/qZYsWJ2EMzjeGNI/TitXLnSDB061Lzwwgtm8ODB5oMPPrCnPvXo0cOcPHkyw2Ns3LjRHhU3duxY+0ICSUlJ9rl99erVad6/zJ49O8vpsY7nuiP8yGxhauTekiVLTOvWrU21atVM2bJlTatWrUzLli1NqVKl7C8jjUn7upySkpJmjbegoCATERGRpp3jMfvHP/6R5nVmzZo1ae7PyPr1602pUqVM8eLF7RkbuD54CMANzbIseXh4KCoqSv369VPDhg319NNPq0uXLqpfv762bNkiX19fHT16VEuWLNGhQ4ckSSkpKfb+xhhNnjxZFy9eVLNmzdSnTx9ZliVJ8vT0lGVZ8vT01MmTJyVJXl5e2rp1qxYvXixJ8vDI/FRyxx13qHTp0oqOjtaZM2fy8X8CqZ04cUKPPfaY3nnnHV25ckXdunXThx9+qOnTp6t3794KCAhQSkqKjDGaOHGiYmJi5OnpqZSUFPu5cfnyZUmSj4+PGjZsKElKTk6W9L/H/M8//5QktW3bVpUqVdK+ffv05ptvpmlzrQ0bNuivv/6SJFWuXFmSZIzJj/8G5CPLsnTx4kWNHDlS99xzjxYuXKjIyEjFxMRo8eLFWrdunc6fP6/ExET99NNP+v777yX979zj4eGhlJQU7d27V5LUrVs3NW/e3D6245+np6dOnToly7JUpUoVXbhwQdOnT9eFCxcyfI45zl379u1TQECAJOns2bNp7kP2zp49q+eee06zZs2SJA0YMEDffPONfv75Z02dOlXNmze3/25nzZql7du32/s6bv/7778lXX0dadq0qSTpypUrafr5+eefdeHCBQ0dOlR33XWXoqKiNG/ePMXGxmZa2/bt27V7925JUu3ateXt7V3oHlvH/3FW507HfV5eXrpy5Yref/99DRgwQE8++aTGjRun+vXrS5LWrl2r77//XufPn8/wmJ988ol++uknlSpVShMnTlTv3r0lXX09sCxLt9xyi7y8vOz2ixcv1h9//CEp4785x/EbNmyo8uXL6/Llyzpx4kSm7XH9sSxLkZGRevjhh3X//ffr448/1scff6zZs2fr1Vdftd/vLVmyRKtWrbLfO6S2du1axcXFqUqVKurVq5eKFy8u6er5wuHEiRMqUqSIypYtK0maPXu29u/fn2ldXl5eunjxoiIjIyVJt912myTeYzjj8OHDeuKJJ9SjRw+tW7dO3t7eKleunKKiorR+/XqdO3dOkrRgwQKFhYXJw8NDSUlJkq4+TxISEhQeHi5JGjRokOrVqyfpf+8RHeeOzZs36/+1d9dhVWVfH8DXvlxSSrFFbFGxxw50VOxuHccOjFHHMbHwZ42Jijoq5hhjzljYYmKPiY0NYgtY9Pf9g/fsuecGYIusz/PwjHNP3HPvOffE2muvnTFjRipTpgwREfXo0UM1XZeyP0NCQujly5cUGRlJ5ubmn+srYB/i68S2GGOfgm6XNKVLgrm5OTp06IDhw4fj119/hZubG8zNzWVGijISj6579+7B1dUVWq0Ww4cPN1g/kFhgr1KlSnBzc0PhwoVlH+jDhw8nuY1KNoyDgwNOnjz5iT45S87ixYthb28PR0dHTJ8+HeHh4arWpaCgIFnMXQgBb29vAOoWKC8vL9nypN+VISEhAQEBAXBwcEDRokVx8uRJVK1aFTVr1sSVK1eMblN8fDzWrFkj09jz5cuHM2fOfIZPz76UadOmwdLSEhqNBj179sSJEydw8+ZNvHr1CvPmzUONGjVkN7cGDRrILArl3HLjxg3kzp0bWq0Wv/zyi+z2pN9KbmlpiW7dusmsGjs7Oxw/ftzkdt28eRMtWrSAEAIVKlSQLeQsecp3v3r1atjb28PCwgLjx49HZGSk6vwQGxuLPn36IFOmTBAicSAB/WGqd+3aJQv3TpkyxeC9jh07BhcXFzg4OODEiROYNm0aGjVqZLJLTEJCAmbNmoWsWbNCCIHMmTPj4MGDn/DTpw5Lly6Fp6enLIScXPbP+vXr5Wh8Shc5IYTsyi6EgKurq9FRARMSEmQ3lrp16xp0TVSyDPr16wcrKyvZ9bFbt24IDg5OcrtOnz4tu8vpZkexb9/ly5dRoUIFeX83YsQIbN26Ffv378ekSZNQpEgReWxVqVLF6LHQr18/CCFQunRp+Zp+RnXHjh3h4OAAHx8fOZrZ1KlTk+z+tmvXLllzbNasWZ/uQ6dRXl5e0Gq1sLe3x9ixY3Hjxg2Znebv749atWqp9rW+kJAQWSO2a9euBtPj4uKwYcMGCCHw888/Y8KECXJ9SZ1DAgMDZfHxmjVrcrfpbwwHmRhL5eLi4vDTTz9Bq9WiePHi2Lp1q6rA9p07dzBu3DjZbaRKlSoy2KNcpN+9eye7Ow0YMMBgBI+3b9/KAt4zZszAqlWrIIRAjx49TNbOiIiIwLRp02Qabbt27bj2zhfy6tUrlC9fXj5g6z6w6XavPHXqlAw0ZcyYURZ/VQrCnz9/Xl7olRFA4uLi8PDhQ2zduhUVK1aERqORD4+6RReNPfSEhobKm5HChQsnW6uBfduuXr0qh5pu3bq10cDAkydP5DGWPn16WctNN1ihO4S9bpfahIQEXLt2Dc2bN4cQAhs3bkRQUBAGDx5sdEQzxZEjR+QDtZmZGXx9fQ1qR7Hk1a9fH0IkDhyh1NpQKN1V7t69i8GDB8tA4tatW1X79tq1a7KblVarxd9//42rV6/i/PnzWLFihazrNHr0aNV6AdPdbZX6XFWrVk2yi9f3aujQobJboZ+fn8n5lON9/fr1MhBYpkwZLF++HAEBATh48CCmTp2KjBkzyvsDT09PPHjwQLU8AOTLlw9CCPz6668AYPAw9+jRIxQoUADVqlXD1KlT5XVj586dJrfvzZs3mDRpEqysrODg4IB///33g78T9vnoB3OU/x81ahS0Wi0yZMiAlStXIjo6WvWbvXPnDtq2bSuPrWnTphnU/Zo3b54cFEA/wBkbG4sNGzZAq9WiaNGiuHnzJjw9PdG9e3eT3eXevn2LAQMGyHWWKFHCYKAB9n507wO7detmcC0AEkej9PDwkEHAv/76C8B/5/OoqCh571eyZEnVeSE6OhonT56UDVI7d+7EpUuX8OeffyZ5zdbtRpkpUyasXr0aAHe3/ZZwkImxVG779u3yRDty5Eh5EQfUNwfKqA729vYYMGCAnKZcBMaMGQMhBLJkyYIFCxYASDz5P3r0CH5+fnB2dkamTJlkAV+lHpMpq1evlttVp04dk4Vh2ftLbhSlu3fvyu9+4cKFSS7j6+sLZ2dn2YKk/x669Vhy5cqFokWLypYjIRJHnLt9+7ZqnaZaGOPj47Fx40ZZHJylbsuXL4cQAk5OTrKWkkJ3GOOjR4/KY6xs2bIyGKk8qO7YsUMeT6VLl8Zff/2FdevWYeHChXJI60aNGqnObYDp42zv3r3InTs3SpUqhVOnTn3qj/1dSO4c8vz5c5lh0q1bNwCmv2/djIb69evLIIXijz/+kNmvmTNnRvr06VVDWNeuXVsOPa08IJgaoQhIbBRRHijSEuXznz9/XhZC7tSpk8lRW+Pj4/Hu3Tt5vi5ZsiTOnj1rMN/u3bvRrFkzef1fvXq1/P6VUcD69+8vGyN0CzMnJCTgxYsXMvDVpUsXREZGom7duklmJt28eVMGH4VIHGiEG6G+Lfr1PnWDCwkJCTJ7vlmzZgbLKstduHBBDiiTP39+g8zlgIAA/PDDD7Im36FDh3D16lWcPn0aM2fOhLOzMywsLLBy5UoA6uCmqXNYnjx5ZMMmjzb28RYtWiSD2saup8p+CAgIkIGiHDlyyOnKM8aaNWtkHVBnZ2fMnj0bvr6+GDVqlGzk7tChg8Go16YCitevX4ebmxsaN26comLw7MvjIBNjqZRyYp8zZw6ESBzFw1gLg25UX3kQKFq0qOz+pEy/cOECChYsKG8kq1evjiZNmsiLhhCJo/7ExMTIZXQfJPXf7+7du+jatSvWrl376T98GqWfjREZGWnw4A0kFtN0dHSEVquVw8oaWxcAPH36FA0bNoSZmRksLS1la6JyM/fy5Us0adJEtgzq/vXr1y/F3ZB0jxn27UuqK4KyD5WUdjs7O3kzb2r/Kun2NjY2GDFihMG6lOwUJftIaRFVAk9Hjx5VzZ9UkCQuLg6XL19+j0+bdujv19DQUJkVpvudhoeHo3jx4jK7BTC9b6OjozF37ly5v/744w/Vg0F4eDhWrVql2qdKZtPo0aOTLOKrL62fP5TPP3z4cIwdOzbZ+U+ePAkhEgvp+vr6qqYp3dzi4uJw5swZ5M+fH0IING/e3KDL88qVK2X3o5YtW2L37t04e/Ys9u7di27dusnudsYan4ztM6UhRKPRYObMmSn9+OwruHXrFho2bIj27dvLEWaV48rKygo+Pj4ATA/CEBAQILu3DhgwQHXPEB8fj5EjR8rpWbJkQdasWWWXeiUA+eTJE9U6jb2XcjxfvXoVu3fv/pRfQZqk/G7Hjh0LIRLLbSTXPXfGjBlyXyrnJ93ze+fOnZEhQwa5by0sLOS/GzRokGzjta74+Hg5uAD7NnGQibFvlHIRTe7hvGfPnhBCwM3NDXfv3jV68VUeLJSRfiwtLdG+fXuDoNSWLVtUJ31lhAcLC4v3uhFM6w8Cn5p+MO/q1asYO3YsunTpgsGDB8t0cGWeW7duyX2n7DdjQQNlPylDWStdUBTKzcGjR4+wceNGtGvXDl27dkXfvn1lRhuQfFYESz30j5Nz584hMDAQ9+7dM5i3R48eskuCqe5ryrHx4MED5MiRQz6MKqMVKsdYeHg4+vTpI29QnZyc4OTkhLFjx/LQ059AfHy86ncaGBiIHj16wMPDAwULFpSZpso8ISEhKFiwIMzMzNC4ceNkb+YDAwNl17eiRYsiKCjIYJ5Lly7Bz88Ps2bNwpQpU1THFO/jlEnuXKt/7Z02bZpshNIfIVTf0qVL5fV+9uzZqgype/fu4ZdffpH3BdbW1nBxcYGjoyOESKzx9McffyA2NlZuo6ltVfb19u3bTY46xr4OZd8oDVorV66Uoz4WKlQIW7ZsAZD4W1ZKIShdNk3d94WHh+O3336DEAK2trbYuXOnat779+/Lcgy6f05OTkl2B2UfztRobcb2oTKyq6urK86fP5/kcpcuXULVqlXlPgwJCQHwX6NlaGgo5s2bh/z588Pe3h65cuVC4cKFjY58zVI/DjIx9o3RfxgwdeFW5lHqH9jZ2aVoyOBq1arJ1GSlK5XuMnv37kWfPn3g7u6OOnXqYODAgapUVA4ofFm63/fTp0/xyy+/wN7eXl7EbW1tDW7Enj59Cg8PDwiROLy3Kco+Dw8PVxWAVbpLGrsR0W2VMtWiyFIf/X158OBBtGjRAgUKFICjoyM8PT1la7LyILJkyRJ5zCi1cZLq5qQ8pFpbW6u6ZuoeZ9euXcOJEyewefNm2Wpuar0sZXSvBzdv3kTLli1V5w8hBH777TeD5Vq3bi3r+CRXoD88PFx2iRNCwMvLC69fvzZ4f326Q5WzD3P27Fn4+PjI35Hub9nPz09mByoPfKb2x8uXL2V9tEqVKhl0gX3w4AHat28vM9KU7FZ3d3ej3fBM4Uaob5P+frl//z6KFSsms9fWrl0ru7UePXoUjo6OsLCwwMCBA5PNRly3bp3sEtWkSROjjRInTpzAnDlzMHPmTPj6+srzB8Dn/09F/1y7a9cu7Ny5E/v37zfY/8q8ixcvls8Yyjkhqd9wly5d5HWgVatWRud/8OABbt26hVOnTqmOHd7P3xcOMjH2DdEvmDp8+HAMGTIEo0aNwpEjRwyym4DEwolKi9Ls2bMNpiuUk/e8efNUtTCUFmxjAQXdAuBKbQb2dfj5+cHOzk7uu8aNG8Pb2xt//vmnQZe1t2/fok+fPnKUH6X10VQAICQkBG5ubrJAZ758+fD8+XM5HTDMqOMHw+/TzZs30bhxY3mcZc6cGZkyZUKHDh1w584d1bz//POPrH/RpUsXk+tUjpW//vpLNdLlxo0bAaiPS2M3unysfby4uDj4+PjITFUbGxt069YNixYtwsGDB1XdbpXve9u2bfI4mD59utGuucB/AwXUqVNHddwkN/Io79f3p38OnzRpEoQQyJYtm0EXeABYuHAh7OzsYGlpmWxWSExMDGbMmKHqHq/fcBUbG4t///0XixYtwty5c7Fr1y65PDc6pH67du2Ch4cHQkNDZR2uIUOGGIwaCUAGlZs1a4a7d+8aXZ9y3AQFBcHBwUEeW0uWLJH3nMl1feb7zk/vwIEDKFu2LCwtLWWjZa1atbBmzRqDeU+cOCG70vbv3x+A8X2mnJs2btyo6gmhDOZhKntKd1n2feEgE2PfmDdv3sgimrp/Dg4O8PLykgEFJfp/5swZZMiQAWZmZqhXrx4ePXoEwPSFW6nhJETiaE/jxo0zmMdUiwb7spT9MGvWLJlxULNmTWzfvh1Pnjwx2nqoLLNp0yY5wlaZMmUMpuuKjIyEtbU18ubNK4cb/+WXXz7Tp2LfGuXhcOnSpTKjzdbWFgMGDIC/v79B1yflGHr69CnKlCkDIQRy5syJQ4cOATC8YVTOH0q3TKUmQ926dREZGalap7H3Ye/H2Pe2cuVKORJgkyZNcOTIEbx+/Vo1r/5ywcHBMuBYuHBhBAYGmnzPd+/ewdXVFW5ubnIksubNm6tqqTBDKb226v+mlCyPbdu2wczMDDY2Nmjbtq3sAq880J07d04+8A0cODDZmirLli2DpaWlzHb29/eX05L6PSb1AMlSh+PHj8v7jBEjRqBWrVrIly+fQeOCciwqXTGtrKywadOmJLtHxsTEIG/evDLwUK5cuWQHg+Hz/8fTDfwmJCQgOjoakydPVj0D2NjYqGokbdu2TdWgcO/ePVX2qzIKsf7+Uf5/9uzZEELI7vHly5f/Qp+WfWs4yMTYV6R/4/jy5Ut06NBBnszd3d2RJ08e2Sdeq9Wid+/eANQneKVbQ86cOWURRn3KhWbFihWywKJysQ8ICPg8H5B9tFu3bqFIkSIQInH0t5s3b6qmm+pemZCQgPbt28sbiFGjRqmWUURHR8t6CCNHjkS9evVkdwlToxax78/ly5flSG716tXDwYMHDYYp1z1u9Ace0Gq1aNCggWp+/ZvQkSNHwsrKCnXq1JHH5bRp0z7TJ0p7jA3EACQ+JBQqVEhmHSgPCQr9bAHdrJXVq1fLoGC7du1kXR/dEYCio6Mxf/58CJE4GMDChQtly7juSGTsP/pZP5cvX5YBoqQerrdt24aqVauqBtRQiua7uLjIrs6662nQoAGEEPjhhx9w4MABo+tVgkSBgYGqLIRu3boZrcem/x4s9TA1WEtISAgGDhwou1dqNBoMGzbM6DJAYoZLiRIl5DVD6UpnTFBQEJycnFChQgWZOTNs2DC+x/iMdH+buiNTZs2aFdbW1hg0aBB2796NAwcOYODAgXLgn0qVKqkyFAFg/vz5Mmu5QYMGqgZO/eBily5dYGNjg169eslGK665lDZxkImxb4AyEtI///wDa2trlCxZEps2bUJoaCjCw8Nx/PhxlC9fXt74bdu2DcB/N4bXr1+XgakSJUrIftP6Dw9Pnz5F9erVUahQIfz+++9ymblz537hT8xSSuneaKxwq6nWY+WGMDAwEJUqVZL7eeLEiaq09nfv3mH37t0oUqQIrK2tcffuXaxduzZNDg+eliUkJKgyVo4dO6Z6qNCtm6PfbTIuLg7u7u7y3GRqxKsjR47Azs4OFStWxJEjR5A1a1Z4eHjIovXs4+je6D948AArV66UXVyU7guZMmUyqLOTXDeFsLAwmVlrbW2NUqVKqervvHjxAlu3bkWRIkXg6OiIw4cP4+HDhzKrjRnSH8Thxx9/hBBCDtMOJP6+lD8g8XtWAgBCCPTt2xe3b98GANy4cUNmqXl4eMgRmpT30e322L9/f3kNMJZ5Mm/ePGTIkAG1atWSWSp//PEHd2f5TujeDyo1unSPgwMHDsg6TEII2ahpTGRkpKpg96BBg2QjmG4Q4tWrVxgwYACEEJg/f76szffrr7/ycfUF+Pj4oHHjxrh9+zY6deoEIQR8fX3x5s0bue+joqKwa9cuuS+7dOmiymB79OgROnXqBK1WCyEExowZI88/ioSEBOzatQtmZmb48ccfsXv3btSqVQvt27fnxoY0ioNMjH1FYWFhaNSoEYRILJzbpUsXmJmZYefOnQY3gHv37pU3fiVKlJAPEMpFetSoUfICUbRoUVWrUnx8PF69eiXTWGvXrg0gscVBqePAvjz9B3ZjrcLKDVnVqlVVhZB1nTp1CpcuXcLhw4dlLSXFunXrUK5cOdkFqmjRohgxYgRGjx6NXr16ySKuXl5eBuvlLhDfv4SEBERERKBkyZLQarUYMmSIwXSF/vGgTNu3bx9++OEHef7p0aMHzpw5gxcvXiA4OBhbt25FxYoVZW0fAKqMPM6G+DQSEhLkOd7GxgabNm0CkNh4odFooNVqZYF2XfHx8diyZQs2b96MBQsWYN++faruEu/evUOtWrVkIDF79uyoXr06mjRpgiZNmsj97unpqcpwAvgcokv3mv769WtV0EgIgXXr1pkshL506VKYm5vDwcEBv/zyC7Zu3Ypnz57J3463tzeESByRy9vbW7Xsixcv0LlzZ7nvRo0aZbSry507d1C+fHlotVpcuXJFdp3W7TLHUr9Tp06hSpUqaNCggbxfUO4jIyIiZJ0vIQS6d+9uUPNRl+5AAhkyZEDdunVlEDM6OhpPnjyBn58fnJycUKhQIdy7dw+XL19WjU7LPp/du3er6uoVKlQINWrUMKivp5xzhg0bJntFzJ8/XzXPoUOH5POKg4MD3N3dsX//fgQFBeH06dNYtGiRzIb6888/AUB1P8rX+bSHg0yMfUWrV6+W6aSVKlVCrly5MGjQINU8ysk/Ojoay5Ytk0W+p06dCuC/m4OoqCi0bt1arq9gwYLw9PTEH3/8gUWLFuGnn36SN6H79u0z2Bauu/TlpKSYsbJf//zzT5mFoFy47969iz179mD+/PkoW7YsnJ2dZUt2jhw5sGTJErx9+xZAYoviqVOnkDdvXtUDjdIipQQFuHbK9yklLcWxsbGyfsKECRNUxd3fvHmDiIgILFy4EEOHDkW3bt3kQ66uDRs2qLLmsmTJgkyZMqFs2bLytZo1axq0fnJL9ocxll02btw4+V1Xq1YNK1euRFxcHPbs2QMXFxdYWlqiXbt2ePLkCY4dO4Zly5bBy8sLLi4u0Gq1shaPEAK9evVS1eK6e/cuBg8eLAcT0P8bNGiQrK/F1PQfrhYsWKAaIbRjx444efKkwTVh4sSJGDhwIAAga9asyJYtGzZu3KgK3CnrfvPmDdzc3CCEQNmyZWXRdWX6lStXkDVrVgghYGlpiaFDhyI4OBhA4oPgtWvX0K9fPwgh0LZtWwCJ9R65O9P3p1mzZhBCIG/evFiyZInB9HPnzsnRaYsWLZpkd0kgMXMyb968qoFD6tSpgxYtWqBmzZryONfvGh0fH8/n/0/EVDBfyUASQsDR0RE2NjZyVGljA27ExsYic+bMslvcv//+q5rn+vXrKFKkiNzXTk5OsLW1Vd1ftm7dWtUgygMCpF0cZGLsK1BO6G/fvoWnpyesrKxkRonSdc3YSfnu3bvo3r27PLkr2QDKxeLatWsYPXq0wQOA7oPB9OnTk+xPzT4v3Qv7gwcPsGDBAvj5+WHatGk4dOiQHM1Hme/du3eyVk6mTJlQqlQpZMmSRbYyCyFgb28PMzMzOXJU1qxZsWHDBtW+vXfvHvz8/NCwYUPkzJkTFStWRN26dbF37145D7c0fT+MdZWNi4vDq1evVPMpN6fKeSNLliwYN24c1q9fj5EjR6Jr164ysK3cWCp/CxcuVJ1Lbt++jcaNG6sKiSp//fr145T5z+DixYt49eoVrly5AmdnZ2TPnh1Lly5FSEiILA6dkJCAn376SRb1Vc4duqM95cyZE+nTp5eBiPTp0xsdMfDAgQP43//+h+rVq6N169bo3r27qvscX0/UdM/3+/fvR/HixeV37u7uji1btsgGAUVUVBTGjBkj51u+fDkcHR3xyy+/GGSK6b7HqlWrZBabp6enrKmmTN+yZYvquuHs7Ixq1aqhYcOG8iHR2dnZoBGKs9G+D8pxcPXqVVmTs27duvI+UtnPMTExWLJkiTw/zJgxw+Q6ld/7sWPH5L2p/p+lpSVmzZr1mT8dA4CHDx8CUP9mDxw4IOvqCSGwaNEio8sqyyxfvlzeV44bN06en5Tj59KlSxg9erTquUKr1cLR0REzZ878nB+PpTIcZGLsM9Gtp6D7b93pQOIFoHTp0hAicWQHZVhvUzfr/v7+MiXV09NTtS7FmjVr8PPPPyNHjhzIkSMH8uTJgxYtWhiMEsW+jujoaIwaNUo+9Cl/5ubmKFeuHE6cOKF6ODly5AiyZMkiH/LNzMyQKVMm5MuXD97e3li/fj38/f0xbtw4ODs7QwiB9u3b4/Xr1wbHUVRUFN69e2fQ9Y5bFL8fuvv8zJkz6NixI3788Ufkz58f1apVw8SJE3H+/HkA6kwHZUhq3YwW5c/NzQ3u7u4oX748MmXKJB9IL1y4AOC/G9SoqCicPXsWc+fOhY+PDyZPnixrzulvG/twUVFR6N27N4QQmDlzJqZPny4zXHWDFsrv+sKFC/D09JT7087ODoULF0aVKlXg5+eHU6dO4cKFC6puUkWKFMHx48cBGA9A674Pt1abdvPmTZk9IkTiqG2+vr6yQcGYjRs3ypEb06VLBxsbG1y5cgVA0r+hOnXqQAgBV1dXrF+/3mD+Xbt2yULg+n+lS5eWGVAsdUruN6j8jpXyChkzZsT48eMNltet35M1a1aDEeZM+fvvv9G/f3/UrVsXLVu2xODBgxEaGpri7WMfZsOGDXB2dkbz5s3la8q+fvXqlayrZ2lpiXHjxhkM6qFPKbFQsWJF7Nmzx+g89+/fxz///IO///4bS5culQMXAHw/yRJxkImxz0C3FcFYK6D+hXbUqFGyu1Pfvn2NzqNcMJ49e4aRI0fKG8ODBw+aXO+9e/dw//591VCxKemqxT6fAwcOyMwkIRJrLSl/SppykSJFDFqbzp8/j0WLFmHEiBFYu3Yttm3bJrsyKMdGREQEBg0aJFuzdS/6pvDNwPfp+fPnqqCCfjcnOzs7bN++XWa7AInBTHd3d6RPnx6ZM2dGnTp18NNPP+Gff/7Bixcv5PE0Z84cmfEybtw4AMk/PPB558MZC/DoDivt5OSE0qVLo3Tp0rJWnzGxsbE4ceIE1q5dizNnzuDUqVNG51u8eLFs9NDNUtLfHt1ulcy4a9euwdzcXD7gderUCQ8ePDCZNap8l5GRkRg+fLgM+Nrb2ycZAFLO40ePHoWVlRW0Wi1atGghGxN070PevHmDrVu34ueff0aXLl3QqVMng25TnNWa+ujX/EpqnsjISDniZLly5RAYGAhAfT+wZcsWmeHWv3//FL+3sW3Qz6xln050dLSseZgzZ07ZlV13X168eBFFixaFEAJNmzaVRd/1KeeJ48ePQ4jEUSb79euHx48fA0j+vMD7meniIBNjKZDSk6b+A/uyZcswZMgQeHp6ol+/fti4caNqXUpXk8uXL8s+8HZ2dnLEJVMBgOPHj6Ny5coQIrGIt36rhKnt5YDC1/Xs2TPZ0lysWDH8+eefCAsLQ3R0NBISEnD8+HHkz58fQggUL14cO3fuBJD0Q5z+Rb1Pnz4wMzNDvnz58OTJE77gpyG6WUk1atSQAaWuXbtiyZIlWLNmDYYNGyYzJ4sUKYJly5YZrOfq1at4/vy5qgVad/3BwcGy/kurVq1MHmMchPg4xgJzuv+/c+dOeb5QrgXA+5/n9RtC/vjjD9jY2MDW1hYXL178wK1nQGJAp1evXrJ74v/+9z9VF9OkHDt2DO7u7rL7om7X5qQo75cjRw7MmTNHNc3YbzW5RjH2db3PPomMjESHDh3QtWtXk7WUlPPD0qVLZaZc3759ZVdMZfqTJ09kBowQwmBkSlOSOmexT0vZV/7+/siZMyc0Gg3q1q0rGyCV6dHR0XKkYiEEVq1aZfI6oZwjfv75ZwghUKhQIaxZsybZbeF7TaaPg0yMJeFDuwD8/fffyJcvn9E6Jk2bNsWGDRvk+hVz586V3RS6d++e5PrfvHmD2bNnyxo8q1ateu9tZF+OchwNHjwYQggUKFAA+/fvlw8busfY8uXLZTe6ChUqqFoDk8ogiIuLw8mTJ2VXyjp16vBFP43y8vKCpaUl3NzcsHr1arx69Up1QxkdHY08efJACIHq1avLbEhT5zr9m9Fz587JrDv9Yq7s0wsKCsKMGTMMamM8e/YMI0aMkNeW6tWrJ9kFyxjdfZ6QkIB///1XjhRYrVo1Lub9CZw/f15mhFSpUgUBAQEATD+URUREyBG6fHx8ZJbz8OHDAZgOIiqv379/H9mzZ4cQAj/++CMuXboEwPjvW3ktPj6erxffOCUrTdnPxo4DZWS4TJky4a+//jI6j+5+VgpzFypUSI5GqTv96NGjKF++PIRILASd0gApS96HNl6b0r17d2i1Wtjb28varrrvcf/+fdStW1dm0OuO8Grs/cLCwuSIou3atZPddRlLKQ4yMWaC7g3ZiRMnMGjQoGRH2Xj27JlqWOLChQujQYMGqFGjBnLnzi1fT5cunUGr5JMnT9C6dWtotVpYWFjIBz9TF5grV67I7hLOzs4mh7dnX05SAcmnT5+iUKFCMDMzk0PD6t4AxMfHY/z48aqA5KBBg4x2f9G/OYmNjcXJkyfRokULaDQalC5dmutvpVH79++Xx8+sWbMMWjSBxOKgugWIx4wZY/TYNRZkv3PnDjp06AAhBPLnz883np+Zr6+v7BKn1NjR/f0fP34cFSpUgBACJUqUUHWNTor+OeTt27c4dOgQ6tevDyESR5Uy1Z2OvZ+4uDhMnTpVFsgdOHCg7Hqqn9kcEBCA2rVro1q1arh69Sru3buHVq1ayWUfPXok12mM8ntV3i9DhgwYNWrUZ/6E7HPav38/ihQpgnr16snXdIM9V69elf9+9OiRzDJt3ry5yfOzcvwcOnQIlpaW0Gq1aNWqlewWpUx//fo1ZsyYIRtL161b98k/X1qjf10NDQ3FnTt3ZNao7m9bdz5TDQjK/OfOnYOrqyuEEPjhhx9koFrJhIuPj8fff/8tu+9OnToV7969S3KdEydOlN3tt23b9qEfmaVRHGRiLAlPnz5Ft27dVKMyJNWSs3r1amTJkgU2NjYYMWIEgoOD8fLlSwCJNTT69Okji+YWLlxYFlVV/P3337L4bo0aNeTrxlo84uPjsXr1arltSgFe9ukYK9huTHLdWgAgICBAPrwpN3KK9evXy4LdQgg0btwYAQEBybYaBgcHY//+/Rg1apTMLHFwcMCiRYsQGxvLaeppiLKvp0yZAiEEfvrpJ4N5IiIi0KdPH3mcpU+fHiNGjJAj0pgSFxeHFy9e4MCBA2jSpIlcVmktZZ+ect5RHgKtrKzQvHlzg9GD9LNaleGpk6NkKJ04cQKrVq1Cr1695AinGTJkwJIlS/j88Qndv39fdnF3c3MzeFi/fPky+vXrB61WK8/jJ06cAAD8+eefMkNVGfHP1L5RjpuYmBhZvDdnzpwGI8ax1CE+Pl5mG2XLlg1//fWXnHbr1i00bdoUQgjs379fvr5y5UpZU023ocGUrl27QggBFxcXo+f0oKAgNG7cGEIIlCxZMkW1HplxugGkW7duYezYsWjcuLGsj6WUytC977xw4QI8PDzQtWtXPHnyxGC6rnHjxsHa2hqWlpYYNmyYwfTnz5/LUQDz5s2L06dPG12P7vo9PDxk6QbG3gcHmRhLgnKTphTfLF68uMmWobCwMDksbJ06dfDgwQODeV69eoUpU6Ygffr0slvc/fv35fSYmBj07dtXdpdS6qWYarV88OABNm/ezHUUPgPdm3jlwp7c93zmzBkMHTpU1jbQvVDv3r1bXth1569WrZp86C9ZsiRWrVqV5FDvz549w+LFi1G5cmWULFkSOXLkkMtXq1bNaKFelvqlNLVeyXoYPXq06vU5c+bAxsZGVafp7NmzSXbZuX//PrZt24YpU6agffv2sni4hYUFZs+ezTXevpC+fftCCIHs2bOrhgLXrcHVvHlzCCFQsGBBgyC2MZMnT0aBAgXg5OQkhyoXQqBZs2byQYd9OgkJCVi1apX8nn/++Wfcvn0b4eHhmDp1KrJlyyanderUSZWZ/OjRI1VwWHkwNHU9Un6Xa9asgRACHTt2RHh4+Of/kOyTUvbj3r17ZSZ83bp18fjxYzk6nFKSQbdwe1RUlKz9WLlyZZO1lJT1BwcHy3XVqlVLjgaqTI+NjcWqVauQIUMG7iL9gXSvs2/evMGQIUNkUF/pkiaEwOTJkw2WVQKJxYoVk9ms+pT71bCwMFkEPG/evLIhW/dcERgYKLvT9u/f3+S5wdj5hbvUsvfBQSbGjFBO2Eq9CwsLC5liOmbMGKMjd+zduxeWlpaws7MzeiFQTs5hYWFyBDAHBwesXbtWVQ8hMDBQ9oF3dXWVAYfkWpW5r/ynofs9P3/+XA7jq2SkmbJo0SJ5o6Dc8Omua8eOHXB0dETJkiXh7++Pnj17yvkzZcqESZMmmRzxQze9OioqCj4+PjKFOXPmzKhZsyb++ecfo/Oz1C2lo7IlJCQgLi5OtlJOmDABQGJwU8mOVDIk/f39TabJK06ePCmD7EpwSaPRoF27dqrhrPmm88Mld85W9ntISIgMJlerVk1mrSoPgfHx8fjrr7/kiH/e3t4m16nsr+3bt0OIxCHMCxUqhLZt2+LIkSOq9+Z9+2mFh4ejTZs2MmDYtWtXlC1bVv42K1SoILOXAPWgDjt37pT3BZUrV07xe+p2pWKp19ChQ2FhYQErKyvZCCmEQOvWrXHs2DGDgP+hQ4fkPF5eXka7ZwL/nUPatWtntHulcg66c+cOOnbsiLZt2ybZCMaStmbNGnmeFkLAw8MDQ4YMgZ+fH0JCQmSAD1DXWFMyHDt06IDg4GAAhvtS2VdLly5FhgwZYGZmpspoVqa/efMG48aNgxACtra22LFjR4pGjWPsfXGQibEkTJgwARqNBkWLFpXdRLJly6a6GVdOzn5+fhAicahhpaCeqYfDs2fPokiRIrKgnn5QYPz48bJbnXLB56DB56V/kZ0xY4bMYBMi+eLqhw8fRt68eWFhYYEKFSoYdGu5cuUKzMzMoNFoZMBSyWY7f/68yRsGILEbpW7L9r179zBjxgz4+flh9+7dqnk5q+37oXtjd+fOHfj6+mL16tXYt2+ffGjQPy8o9ZIaNmyIWrVqyeOsQIECWLBgAZ4/f66aXwlOvX37VtUN4unTp+jZsyeyZMkCDw8P9O7dGydPnlRtGwchPl5UVBS2b99ucohoZf9Onz4dQgg4OjqqukEo0x88eCCzXWxtbVNUk23jxo3Yt28f/v33X9Xr/EDx+QQEBMDR0VFVey9LlixYvny5nEf5TSr/BhIfDMeMGQM7OzsIIeRoTyk53+uuj6VOK1euRLp06eQxU6JECfj7+ycZ8PH09JTnfn9/f5PzxcbGokePHnLdpUqVwoEDBwCozwWvXr2S/+b70ZSLj49HTEwMpk+fLgOElSpVwsaNGxEaGppkg4/y/Y8ZMwZCJI4Y6evra3Re5VwRGxsrs5+yZMkiu+bq7surV6+iTJkyEEKgRYsWJhs4GfsYHGRizAjlArp37155Y798+XIUKFBAdjXR75c+ceJEaLVa2NraJtt/OSIiAsOGDZMXdaVlQmnZvnnzJurWrQtzc3M4ODjI0WHYp6cf4Nu+fbvcz0rXx507d8qRnZLi5eUFKysrWFtbY+zYsar3AIBGjRrJjJAyZcpg7969smudKYcOHYKNjU2yxVv5ISL1eJ8b9OjoaHh5ecHCwkK2ZpqZmaFw4cL4999/5TlD+a+/v78qBd/GxgZeXl5GR5LRDWgcPHgQ3bp1U00PCwvDrVu3DAY84GPt0zh+/LjcR7qZiLp0HxyUh4KSJUtiz549ANTH0p49e1C0aFHZRcoUU8FB3q+fX1RUlMxk1mq1qFq1qipQkFQXlVOnTsnRobJnz250lFH2/VmxYoW8H9FqtdBqtcmOQAwk3kc6OTlBCIFu3bqpMlD1tWzZEhYWFrC1tYWdnR06d+5sNGMf4OPtQ5w5c0Y2LHfo0AHXrl0zmMdU7VXlv0oXt3r16slBGUw1SiiZqubm5qhRo4bsEqec42NiYrBs2TJ5XCkjXjP2KXGQiaUp79vyfv/+fRQsWBD29vZYvHgxhg4dKi/0mzZtUl1st27dCiEErK2t8eeffyb7XosXL5a1MIwVW1yyZIlsuVqxYsV7bTdLGd2HqsuXL8s6BkIkDum7ePFiPH/+PNmHL+U4uHfvnnwQLFiwoMwQUAIAO3bskOvv2bOnrMdl7KYtNjYWe/fuRYkSJWSthKioqE/yudnXoZsNZ+z8oH+c3bt3D/Xq1ZPHTMGCBWFlZSWzGSpXrmxwc3jv3j3ZzS179uzYsGFDsueiU6dOyS51SWXs8cPFpxUcHCz3ZefOnXH79m2j8ynHxd9//y27L3bp0kUW71amv3z5UnaDEEJg9+7dX+aDsPcSFBQkR4GqUqWKzBpJyf2Jr6+v7DqpdIvk4OD37eDBg6hcuTK6d+8uu1fmypXLaLaRPt1RBhcuXCjvIfQbGOzs7DB69Gg0bNhQXmt0u26xj6M0MLq4uLz3qJ1K4FkZ6MfOzg5jxoyRBd1NnTdKlSoFIRIH6VDqaOnOe//+fbRs2ZJHn2SfDQeZWJqheyHesWNHigI3d+/ehaurKywsLLBz504EBgbKh34PDw9VC7/usOBt27Y1maGiW6xVeRhQtkW3Dsbz58/x+++/G23xYB9H92H59evX6Nevn9wXtra2mDBhgkHmx6tXr7By5UrZGqh/YVf+f/78+XBwcIBWq0XXrl1V87x8+RKdO3eWAQAvLy+jD+4xMTHYtWsX3N3dZYCJi/GmXiEhIahRowaE+K8gt/6Dge5xoGRJzpo1C0IkDke8du1aXLhwAceOHcPkyZPl8VqlShU59DGQOBS9spwQAuPGjZNdN6Ojow2O27Nnz8pi4YULF+YHi/egnOM/pouqr6+v7Ga9ePHiZDMblQLf+fLlM3oNO3PmjDzW3N3dkx1Zin15cXFxmD17tvyN9u7d22R3SYXy+q1bt2SdQCEEHj169MW2m30eKQneK/cda9asQcaMGaHRaNCyZUu5rKnj5uXLlyhZsqSs+aXfiHDjxg1ZJ+zIkSM4fvw4unTpwsfVJ3Tv3j056EZK6uXp/1eXMkJl+fLlTfaYiIuLQ1RUlBwRUIjEQYuuX78OQH290v03d39nnxoHmViacvPmTXmTLoTAxIkT5QOYqQu9cqJWHg4nTpwol/f19ZUtQy9evMBvv/2W4lbkgwcPytE65s+fr5pmrDgjXwA+nv53uGDBAtjb28t9li5dOrRs2dJguSNHjsgMggULFiS57nfv3qF+/frQaDTImjUrtmzZopp+7do1mfZsZmaGPn364PDhwwASs6kOHjyIIUOGyCy2okWLYtu2bUhISOBjIJW6evWqbCE2NzeX9bWMZS41adIEbdq0wcmTJ1GqVCk4OzuraiEpxowZAzMzM1haWqJnz54G76ec55ydndG/f3/V9JiYGERERMDf318GMvPnz4+1a9d+4k/+/Ro2bBjc3d3l/5sqqKtPf76IiAiZnVCnTh2cO3fO6HLK+s6ePQuNRgONRoNGjRrh7t27AP57WHj37h3++OMPmSXr4+PzIR+PfWYPHz6UQ9MXLFgw2Zp/upYtW4YyZcpg4sSJAPjhMLXSr5Wl1DzSffA3FkRq06YNzMzMkCFDBvz555+q+YzZt2+fvN+wtrbGpEmTMH/+fMybN09muzRv3txgOc6Q+zR07/mUenr6+0v3/439npXGh9OnT8v71T59+sh7CWPLFCpUCJkyZULmzJlhbW2NXr16Gd0+vrdknwsHmViace3aNVlwWRk6NF26dGjRooWq8J5+K8KUKVMghECTJk0QFRWFixcvym5VRYoUkSP9AMC2bdvkRbtKlSqqbBj9C/b//vc/uQ1JZanwyf/T0P3+9+/fL7POhBCoWLGirHeTJ08eWe9Eudl7+/atLALepEkTnD9/HkDS/eGzZcsGjUaDunXrymwCZRu2b9+uGvFLq9Uib968cHFxQZYsWeTrrVq1kg+RLHVbu3at3OfKiC/6x8/AgQNloVZPT09oNBrMmTNHNY9yTL5+/Rp16tSBRqNBtmzZsG3bNjlPQkICLl68qBoW/ccff4SXlxcWLFiASZMmoXXr1nJa7ty5sXHjxs/8DaRuSu22hIQEjBw5Un53ykiSuiO96T4wBAUF4fr16waFVXX3/ZYtW+T6Jk+eLGv0mMqWbNu2LYRIHIRiypQpBtNv3LiBBg0aQAiBAQMG8DXkG7VhwwaYmZlBCIE2bdrITIPksplev36dbMYb+7bp3o+8ePECEydORKtWrVCzZk00btwYM2bMMCgIrSxz5MgR5MmTR95nPnnyBIDxQJNyzIwdOxa5c+eW5xndv1KlSsmh7nVrALFPIygoCFZWVtBoNPDw8MCDBw9U05V99PjxY8yePRve3t5o06YNevTogZkzZ+LFixeq+bt27SrvExYtWmTwfnFxcVi5ciXMzMwwefJkmf1UtmxZeaww9iVwkImlGW/evEGvXr0ghIClpSXy5csns0XatWuHgIAAAIYX1xkzZsguS0BiS/GSJUvkCDHDhg2TRfXCw8Mxbtw4OeR3ly5djPa/DgwMlDUZ2rdvD4Bbjb6E4OBg1cN1njx5MHv2bAD/ZahZW1ujadOm8mFeyVRbsmQJhEgsAj9hwgSjtQ10de/eHVqtFg4ODrLmlv7DZ9euXWV9DWXdTk5OqF69uioTjocTT72U/fbkyRP88ssvsiD3sWPHACQGjXSHFlZGlXRxcYGjo6MMaOpS5t+6dSuyZs0KjUaDevXqyeL0yrlk165dqhHmdIOaurXBdEec4+PMkO7vNiYmBjdu3JDDyefLl08+BOhmIJw/fx4NGzaEs7MzMmfODBcXF4wYMUIOKa/7PcfHx8vzUqlSpeS1yNR26BZsrVSpEk6fPg3gv/2ekJCAgIAAg1Hj2LclMjJSdn3LkiULfHx83uv3x9eFb8eH7odZs2bJrEPl2qD8NW3aVDZ46d8fDh48GJaWlrCxsZEZbcYo54x3795h586dcHd3h6OjI3LlygUXFxf873//43vPL0DpEeHk5ITu3bsjJCREnqf9/PzQtWtXWFlZqa7NyvFQpkwZmbEGJN5LKM8upUqVwo4dO+S0uLg4BAYGolKlShBCIDQ0FH/99RemTp36NT42S+M4yMTSlPPnz8vWnAYNGmDIkCEyWOTi4oLTp0+rRl8AgEuXLskTvpKZFBwcLGvrODk5Yf/+/fJifuPGDfTs2VMGs/LmzYv58+fj2LFj2L9/PxYuXChHmShVqhROnDjxdb6MNObJkyewsLCAEImjOQ0ePBg3btxQPUC6uLhACIGsWbPKDAXdB8fSpUvL1sP9+/cbfR/l+Pn333/h7OwsR5JTairo94e/desWdu3ahWXLlmHXrl2ymKf++ljqt2fPHnnzV65cOdU05bhYsGCBPN+YmZnh6dOnAEw/xHTr1k0GM5Vut7rH9PPnzzFnzhy0atUKbm5uKFSoEBo0aIC+ffuqsjC5S64h/e/x559/hhACb968wezZs5ExY0ZVF4i4uDhER0fLYru6WbO6WZM3btyQ8yvOnj0rsyUHDBggu0EY2x6lJpeVlRVsbW0xePBgkxkI8fHxfA75hh09elRmr9aqVUtmlPBvMXXQH502NDQUd+7ckXXyTP32Ll26JLMNlXpJvXv3xsCBA9GzZ0/ZUKkbxNbtXhccHCxrLRUuXFiOQJzcb/3ly5e4e/cu/v33X3ltScly7OOcOHFCdR1wc3ODi4sLMmXKJAd/0P1TSmkofzY2Nqr6rPPnz5c9M5ycnDBq1CjMnDkTo0ePRtasWSGEwODBgw2242PqBzL2vjjIxNKUuLg42f3NwsICfn5+8PPzQ/Xq1SGEQIkSJWRmi+LmzZsoVaoU7O3tsWnTJvn61q1bkTdvXpmNpFsoMTIyEtWqVYOtra28QGi1WpmlIIRAsWLFTLZYs89jxIgRqF27NgIDA1U3VcqFd+PGjbJuTqVKleSDnpK1dOjQIVnbYMCAAbJAs6kHAuWh1N7eHkOHDn2vbeWbvu+Hbhc3b29vWQdMKdwcGxurOoaKFSsmu9IuXbrU6Dp1a/QULFhQtngqgxEYO37CwsKQkJBgkLnEx5qa/u95xowZMgAkhMDmzZvx4MED1K9fH0IIODg4yIe8gwcPymHDO3fujKVLl8LHxwceHh6yZdrDw8Po+w4fPhxCJNbRWr9+vcnAkaenJ/LmzSuD3lmzZsXWrVs/wzfBPreYmBiMGjVK3ieMGjVKjhrIgaZvm+5589atWxg7diwaN26MQoUKQQghyyDo78fr16+jWbNmMpt6/vz5uHfvntzvALBixQrZvbpjx46q5ZX1zZ49G3Z2djA3N1fV21Gmx8XFyS6YpgqE63fvZZ+Pt7e3zEDS/3NxcUGdOnXQq1cv7NmzB3v27MGCBQtUZRVat26tWt/gwYNVmfBK0EmIxBpb+oPU8PmEfWkcZGJpzv3791GlShUIkTj6zrFjx3D79m0UL15cnqRnz56Nly9fAkjMgFFO9LrDhT99+hTDhg2TJ/U1a9aoWgnu3buHxYsXw8XFRY4s4ezsjIIFC8rhRBV88v8yYmJiZJciU3788UcIkTjs69ixY+Xryj5SurW4ubmZLJSs3Hzq1lrJly+f7CLFN3Vpg7HgzcWLF9GiRQsIIZAxY0aZMRkfHy/PHwEBATKY2bNnz2Szmby9vWFtbQ1LS0sMHz7cYLqp442PQzX9rITt27ejQIEC8jdcp04d7Ny5U9ZKWbZsmayNogwYUKNGDVhbW2PBggV4/fq1XNeTJ0/Qu3dveS1YuHChwfuHhoYiV65cECKx9ltgYKBqelxcHDZv3gwhBH777Tfs3r0bQiTWbtPNSmCpy40bN2TAME+ePPjnn3++9iaxJOieh9+8eYMhQ4bIjEXdLm+TJ082uuwvv/wCIQSqVauGPXv2GC30vXfvXlnfUwgBf39/g3kiIyNRu3ZtaDQaODk5ybp8CQkJuHDhAjp16gQrKyuTgwmwL2/Dhg1o1aoVXF1dUaNGDVSqVAkzZszAoUOHEBwcbDD/mTNnZGO2EAJnz56V016/fg1/f3/UqFEDGTJkgKurK0qWLInVq1d/yY/EmEkcZGJpTkJCAlavXi1P2kOGDAGQmL6sXPxtbGzQu3dvhIaGAkisryNEYo0lXUePHpW1Odzd3VUFvJUbkbdv3+Ls2bM4e/YsDhw4IINXAKeufkuUgMCFCxfksVGkSBF5UVeymR48eCCn//TTT/LGQPfGU/m3Mjx5+vTpYWZmZtAiyb5P+qO1HDx4EOPHj8e0adOwaNEiDBo0SBbl1u1qpSwLAC1btpTBzPXr1xt9H+VhIywsDBUrVpTBTKULLmcopZzud3X58mU5uIMQAoUKFcLixYtV3VaAxBp8HTt2lFlOCxcuhKurK1q2bKk6zyvrvnjxoizanSNHDty/f99gO1asWCG7WlerVg2XL19GeHg4wsLCsH79eri5ucHGxkbWbAsKCvpcXwn7QuLj4zFnzhzZbYoHe0gd1qxZI7smKRmKQ4YMgZ+fH0JCQnD58mWDZSIiIvDjjz8ic+bM2Lx5s0HDwe3bt+Hl5SWz4JXC8BUrVpSjzwH/nVO2bt0q63tmyZIFgwcPRt++fVVdsFauXPl5vwj2XmJjYxEdHY2XL18abejRHUQCAIYMGSKPhUmTJhnMHxkZibCwMFy9elV1HePrP/vaOMjE0qTw8HB5s583b15VK1GvXr1kf+iGDRvi+vXrmDZtGiwsLNCsWTPVw8Pr168xc+ZMeSMwffp02cptLOig4IKd3ybloq4UiLe1tUW3bt3kdCXrZMyYMfJBcfbs2XJf6t8w9O7dG5kzZ0bNmjXlMWIqYMC+P9evX0fDhg0NUuPNzc1llzndbhVxcXHyxvD+/ftyeocOHUx2vVCOuSVLlsDJyQlWVlZo1arVF/yUqZvub/b169fo16+f/N5tbW0xYcIE1Sih+svt3LlTdm9UAodKxqKxc/zff/8ts5WM1cwAErMllfOFi4sLChYsiGrVqsnt6tKli+qBE+AHitTu2bNnOHjw4NfeDJaM+Ph4xMTEYPr06TIQVKlSJWzcuBGhoaEGI8LpLwskdrs3Votz1apVMmAkhEC9evUwbtw4GTBSBhAB1OeWadOmyWwX5byhe//Kvi3652pT527lfnPbtm1yn5rqPp+S9TH2pXGQiaVZAQEBSJ8+vbxpVzJSnj17hqVLl8rCi40bN0aLFi2g1WpRsmRJg77tQUFBaNKkCYRIHFJUN52VpS7Kvg0PD5fp7y4uLjINXbdrU/bs2SGEQNWqVbFz506D9WzduhVCCPTp0wc7d+6EnZ0d2rVrp6qHw75fR48elQ8M9vb2GDx4MJYuXYo1a9agRYsWqvpsTZo0US2r3CSOHDlSdrOdN2+e0fdRzkOxsbEyoJU/f37cvn37s36+1E4/ALRgwQJV4C9dunSyC1xyhgwZIh84HRwcDIr363r06BF+++03+UCoO/qoktkaGhqKX3/9VQ5UoPs3cuRImVXJvk+c4fxtO3PmjBy8pUOHDqqCzIrkGhF1s10fPXqEdu3ayd+4q6urbPgMCQlB3bp1IYRA9uzZVdmPyv3Kq1evsGPHDpQvXx61a9dGq1atVAOT8KAOqZvSHV6j0ahGHWbsW8dBJpZmRUVFyTTU9OnTY9myZYiOjpbT16xZIws4WllZwdzcHBqNRj4U6BZXXLlypWzF7tq1K8LDw7/KZ2IfT7nB9/Hxkfu+fv36soVSecBbt24dhEgcDr5QoUI4efIkQkJCcO/ePaxevRqFCxeGlZUVdu3aBQBGu1Ky71fPnj1hbm6OAgUKYPPmzYiJiZEPBcowwzlz5pQtz3v37gWQePzpFnxWumPUr19fDlVvKptp165dGDduHAchkqHb0rt//34UL15cPuBVrFhRDiOdJ08ek0OIA/9972fPnkXVqlXlOpRMJlMtyocOHUKZMmUghECzZs1U8+leV/bs2YMRI0bgt99+w4gRI1Q1O7ieFmNfR6NGjWQDlG6Q+EO8e/cOnTp1kl1kx4wZowoyvnv3Dj169JDXiYEDBxqsQ/d6EBERoZrGWS2pV3x8PA4fPiwbNPPnz8+191iqwkEmlqYFBQXJot7169dXDekNAMeOHYO7u7t8eLC2tpYPg7oePHiAn376CUIItGnTJsmUafZt071hUzJRMmfOLDNJdG/aevXqJYcxz549O5ydnWWNLiESR5eKiIhQje7BN33fvwcPHshRZHr37q16aNAtLr1q1SpZ8Ldo0aKqeZRlVq1aJbOhxo4dKwvXJxeo5GyIpAUHB8si/kpASRlZdOLEifJ837RpU/ldJvWdT58+Hc7OzvJ3n5TIyEhMnTpVvvfGjRuTnF83oMSjQTH29dy7d08W7/f29jY5n/6IXqbOHevXr5cBptmzZ8tsad2u0wsWLJDnCv3sR1Pvy/cZqYuxc/rZs2fRqlUrmJmZoWjRotydlqU6HGRiaVpcXBxmz54tL+BTpkxRDSMLJNZGqVevHsqVK5dkquqRI0cMRgNiqZPyULljxw6ZrVSuXDk5PLyS8fbw4UNMnz5dNXSsMv///vc/vtFLo5RRBW1tbXH8+HEA6ptI5UEgKioK48aNkzXglECmfoCoUqVKsihwStLlOVMuaU+ePJFd0WxsbDB48GDcuHFDtY9cXFwghEDWrFmxZMkSAMYfBJTXHjx4gKZNm0Kj0cDKykpmnZk6B1y4cAENGjSAEAKlSpUymv2q/4DKwSXGvq5r167JzBJl0Ab936Wxc70u3S7OP//8s8ygfPLkidH1jBgxApaWlsiSJQuESBzJku8tUj9jx0ZERASuX7+O+fPno2DBgrKnhY+PD96+fcvXdpaqcJCJpXkPHz5EzZo1IYRAmTJlcOjQITlNuZA/fvxYtUxyJ3q+Afh+KA+Cjo6O8qYSUB8DJ06cgI+PD8aPH4/x48cbrZvAUj/9emymrFq1CjY2NrC0tDQZFFLWcfbsWdSqVQtCCNjZ2cmCzvHx8TLYdPLkSQghYGFhgT59+uDhw4ef6iOlWSNGjEDt2rURGBioOl8r3/nGjRtlkfZKlSohLCwMQNK/59WrVyN//vwQQqBRo0ZJvn9MTAyWLVsm6wLOmDHjE3wqxtjnFBQUBCsrK2g0Gnh4eODBgweq6cp5/fHjx5g9eza8vb3Rpk0b9OjRAzNnzpQjVCo8PDwghEDz5s0BGA4Kk5CQgCpVqiBnzpwYNWqUbMjSHayGpV5PnjzBnj17cOnSJUycOBG9e/fGDz/8IPdziRIlEBAQ8LU3k7EPwkEmxgBs2LBB9nn/7bff8OjRIwCGD5McPEo7lH1948YNecEvWLCgzExJ7liIi4vjANM3Trf4alL0C6ea6g6rzKN0cXN0dMSmTZuSXX///v1haWkJIQT69u0LwDCg1blzZwghkDNnTqMjE7H3ExMTI7semvLjjz/KluSxY8eanE/ZR2/evEH37t3loAHKSJKmzhV3795Fjx495PklNDT0wz4MY+yLady4MYQQcHJyQvfu3RESEoKEhAQEBATAz88PXbt2hZWVlaztJoSARqORDZl//vkngMTRLHv16gVzc3O4uLggKChI9T7v3r2Dr68vhBBo27Ytjh8/jnr16mHQoEFf42Ozz2DDhg0Ggzso5RdmzZqlmpfvJ1lqw0EmxpBYI0MpvpgrVy78/fffX3uT2DdAeTgcNGiQHHGqQ4cOcrqpAAXfDKQuly9fVhVm16W7L0+fPg1PT0+0bdsWZcuWRb9+/bBp0ya8fv0awH/Hy/3795EzZ04IITB06FCD9eive+/evaobzMuXL8v1KesMCwtDjRo1ePTKL0D5zi9cuCD3SZEiReR3n1QR8ICAAFlnq0SJErIIu6lzwoYNG1C5cmXZJY8x9m07ceKE6nzt5uYGFxcXZMqUCXZ2dgYBA6U7tPJnY2ODK1euAAD++OMPOV3JjLp9+zbOnTuHCRMmIGPGjMiQIYMsxaAbGOeuU9+HcuXKyZGKO3bsCF9fX1X3aa6vyFIrDjIx9v+OHj0q+7z/9NNPqpF8WNqkPBi+e/cOjo6OMpNk5cqVAPgmL7V7+fKlHB56y5YtAIzv08ePH8tMIt1WaaX+loeHh6zXBSQOO60MSW1paSkzI00Fmi5evAh7e3tZULZOnTqqefSDGhzE/PyU77hXr16yvla3bt1StOzIkSNlN7jJkyer1qdQjrPksqkYY98eb29vObiD/p+Liwvq1KmDXr16Yc+ePdizZw8WLFggB5kRQqBFixYAEq9BTZs2ha2trVy2QIECKFCggJzXy8sLb968UdVo42vA9yM4OBhnzpzB48ePVcEl/QxqxlIbDjIx9v9iYmIwevRo+UDh5+fHQ4Ez2Yrk5+cnb/qGDBnCF//vwNatW2UB6JEjRwL4Lxig/PfIkSMoVaqUHNmnc+fO+P333zFz5kw0aNBAji7o4eGhCkz7+PggR44cEEIkG5xQMpnKly8Pe3t7CCGwYcMGANxl92tR9n94eLjs/ubi4oJt27apphtbJigoCDVq1JCFw+/evQsg6X3H+5Wx1GXDhg1o1aoVXF1dUaNGDVSqVAkzZszAoUOHjDZSnjlzBnnz5pX3EcrgAMePH0f37t1VDRdCCOTIkQPr1q370h+LfQP4/pJ9DzjIxJiOGzduyKJ7ZcqUSXKoWJb2NGjQQNZZYanfpUuXUKJECQgh4OrqalCUNT4+Hh07doQQAmXLlsXmzZvx+vVrGRB4/vw5du7cKQNVI0aMQEhICADg5s2baNq0qXxwWLduHd68eQNAnf7+/PlztGjRAtbW1pg+fTqqVq0KIQTX3fgGKPvJx8cHQghYWVmhfv36siZXUg8Cvr6+Msjo6en5RbaXMfZlxcbGIjo6Gi9fvjQaeFauFcq0IUOGyAaLCRMmqNazYcMGeHt7Y/To0Zg3b57qOsGZS4yx1EZDjDEpX7581LlzZyIiMjMzI2dn56+7QeybEBcXR0RE27dvp1atWhERUUJCwtfcJJYCAJKcXrRoUcqdOzcRJe7PEydOqKb7+vrSypUrKV26dDRkyBCqV68epUuXjoQQRESUIUMGypQpkzxPzJw5ky5fvkxERPnz56f27dtTmTJliIjIy8uLpk+fTlFRUaTVaikuLo5evnxJ69ato61bt1KZMmWoY8eO1KtXLzp9+jTNmDHjU34V7AOYmZkREdHAgQOpYMGCFB0dTWfOnKGlS5eaXEY5L7Rq1YqqVq1KREQLFy40OLYYY6mfEIIsLCzI0dGRNBoNxcfHq6Yr5xDldXd3dyJKPE9kz55dTtNqtdSyZUsaO3YsjRs3jvr06SOvE0REGg0/rjHGUhft194Axr4lGo2G2rVrR8WKFaNq1ap97c1h3wit9r9TZUJCAmk0Gr7p+4Yp+0gIIf+tLz4+nszMzKhbt260detWCg4OptDQUCIiiomJIQsLCzpy5AgRJQaIlOAiUeJ54vnz5zR8+HBasmQJERE5OTlRz549qWzZsgSAhBDUsGFDAkA9evSg27dvk7e3Nx05coTy5s1LdnZ2dPXqVdq5cydZWFhQnz59KFOmTPTTTz/JzwBAPqSwL08IQXFxcaTVasnHx4caNGhAL168oBUrVlDDhg3JxcXF4PjSaDQEgLJkyUINGzak06dPU6NGjahs2bJf8ZMwxj4H/fOzqfO1ubk5ERH9+++/ZGVlRdHR0ZQjRw6jyyiNGABU9x6MMZaaCCTX1MtYGqY8YDDGUp8pU6ZQbGwsde3albJnzy4DS7ouXrxInTp1ogsXLlCjRo1oy5YtclqhQoXoxo0btH79emrZsqV8febMmeTl5UUxMTFERNS9e3fq168fFStWTD4g6Fq7di1NnjyZLl26REIIAkAajYYSEhLI3Nycpk+fTv369TO6LPt2NGzYkHbs2EEODg7Uq1cv+v33343OpwQZ4+LiKCIigpycnFSvM8bSloSEBAoMDKS2bdtSWFgY5cuXj44fP04ZM2b82pvGGGOfBT89M5YEDjAxlvqcPn2amjZtSmFhYeTg4EBPnz6l2bNnG21lzpYtG+XIkYMuXrxIAQEBdPnyZXJzc6Pg4GBKSEggBwcHKlKkCBERbdu2jX777TcKDg4mIiIPDw8aNGgQVa9enSwtLU1uT9u2bcnDw4MWL15Mhw8fprCwMLK1taWiRYvSiBEjKGfOnETEQYhvlRKc9PHxoR07dlBERAT9888/1LRpU6pQoYJB8FLZh1qtlpycnGQXOs5+ZOz7Zyx79sKFC+Tr60uPHz8mNzc3mjt3LgeYGGPfNX6CZowx9l0RQlBYWBgJIejNmzfk6+tLLi4u9NtvvxnMmylTJipRogTt2LGDbGxs6OjRo+Tm5kb58+cnS0tLioiIID8/P7p9+zZt27aNiIhcXV1p8ODB1Lx5c0qfPr1cl5IY/PbtWwJAtra2FB8fTxqNhpycnGjYsGH022+/kVarpWfPnsmHDGUeDjB9m8zMzCg+Pp4KFChAv/76K/n4+FBoaCjNmzePKlSoQGZmZkkGCDm4xNj3Tff3r/zeIyMj6dGjR7R//36aNWsW3bx5kxwdHalbt25Urlw5blRgjH3XuLscY4yx70pERAS1aNGCAgICqHDhwnT16lWysLCg2bNnU7t27cje3l6VXRIcHEyurq4EgIYPH07e3t5kbm5Oo0aNosmTJ8subnZ2dvTLL79Q9+7dZcFwhe4Dw7Zt2+jy5cs0fPjwZLfVVM0o9m1R9lNUVBRly5aNIiIiyNnZmSZNmkQdOnTgB0bG0rinT5/S+fPnKVu2bLR161YKCQmhU6dO0dmzZ4mIqHjx4uTj40M//vjjV95Sxhj7/PjOljHGWKqRknYRc3NzcnNzIyKiRo0aUbt27SgmJobGjx9Pf/zxBxGRqni7g4MDNWjQgIiINm/eTBYWFiSEoIIFC1LWrFkJABUsWJDOnDlD3t7eBgEmov+6SO3fv5+6detGXl5edOrUqWS3lQNMqYNGo6G4uDiysrKiadOmERFRSEgIXbx4kQNMjDE6dOgQ1alTh4oXL06jRo2iBQsW0NmzZylbtmzk4+ND58+flwEmHp2WMfa947tbxhhjqUJ8fLx8mI+MjJSv6bOxsZFBprNnz9Lvv/9Onp6e9OzZMxoxYgRt2rRJNb+DgwPlzp2bLC0t6dq1a7L4d+XKlalcuXJERHTjxg16+PChrNMWGxurWkdCQgIdPnyYJk2aRM+ePaNq1apRnjx5PuGnZ1+bsu+7d+9O9evXp3Xr1tHUqVM5wMQYo5YtW8pRJKtUqUI///wzzZkzh65cuUIDBgwgosTBZIi4cYEx9v3j7nKMMcZSjZs3b9KIESPoyZMndPjwYYPpSlZJeHg45cqVi169ekXHjx8nNzc3GjVqFM2ZM4eyZs1Kc+fOpYYNG5KFhQUREa1Zs4Y6dOhANjY21K9fP5o4cSKZmZnRihUraPr06XT58mUqWbIkjR49mpo1aybfLy4ujqKiomjfvn00efJkOn36NJUtW5amTZtG7u7uX+x7YV+GsRFHucsjY4yI6NatWxQeHk45c+YkS0tLcnBwICKuu8cYS3s4yMQYYyxViImJoVy5ctHjx4+JiGjgwIE0ePBgyp49u2o+5aG/V69e5OfnR3369KG5c+cSEVHt2rVp37595ObmRoMHD6ZOnToRUeJDQO7cuSk0NJTatGlDc+fOJScnJ3r16hUtWLCAxo8fT69fvyYnJydq1qwZ1apVizQaDb148YIOHjxIa9euJSIiNzc3mjZtGtWtW/cLfjPsa+DgEmMsOdydljGWFvHdEWOMsVTBwsKClixZQtWrVyciorlz59K0adPo4cOHRPRf1zmNRkMAqEiRImRhYUG3bt2iO3fuEBGRr68vNWnShC5fvkz9+/enkydPElFiTSUlQ8nf3192a7Czs6P+/fvThAkTKF26dPT8+XNavHgxdejQgVq3bk39+/eXAaa+fftSYGCgDDBxG873jQNMjLHkcICJMZYW8R0SY4yxVKN+/fo0ZMgQKl++PMXFxdHKlStp1KhRRJQ41DxRYoaJEIKKFy9OQgi6ePEiRUdHExGRq6srjRkzhtq0aUOvXr2inj170uHDh0mj0ZCrqys5ODjQ69evadWqVXJdlpaW1L9/f9q+fTt17tyZihUrRhYWFpQvXz4qU6YMde3alS5dukS+vr5kb28vg138cMEYY4wxxtIa7i7HGGMs1fn333/J3d2d3r17R0REU6dOpe7du5Ojo6OqG1Pp0qXp/PnzNGfOHOrXr59c/tmzZ1S1alW6fv06VaxYkX7//XfKnj07FS5cmABQixYtaNGiRWRvb2+0W9SVK1coc+bMFBUVRc7OzkT034hBnOHCGGOMMcbSKr4TZowxlqokJCTQDz/8QPPnz6dixYoREdGkSZNo3rx59OrVK9JoNDJzqWPHjkREtGHDBvlabGwsZcyYkRYtWkQVKlSg48ePU6dOncjJyYlq1qxJ8fHx9ODBA3r69CkRqYNGSpZSkSJFKGPGjDLApBR25QATY4wxxhhLy/humDHGWKqiBHI6duxIQ4cOpfz581N4eDgtWLCApk6dSkRElpaWRESUN29eypQpEz19+pTOnz9PRP8NRV+1alXy9vamqlWr0t27d6l9+/aULVs2IiI6fvy4LDCuZCgR/dclT5+p1xljjDHGGEtLtMnPwhhjjH1blBF72rVrRw4ODtS4cWMKDQ2liRMnUuHChalp06ZkY2NDBQsWJAcHB7p9+zY9evTIYPnatWtTtmzZqEqVKrRr1y6yt7cnKysrioqKomXLllGlSpU4O4kxxhhjjLEU4jtnxhhjqY5SVFsIQQ0bNqRJkyZR3rx5iYho5MiRtHLlSoqLi6NChQpRqVKlKCYmhnbu3ElE6iGlExISqFixYrRgwQJydXWlyMhIOSrcyZMn6f79+1/h0zHGGGOMMZY6cZCJMcZYqqUEhPr3708DBgwgJycnunfvHvn4+NCCBQuIiKhTp05ERPTPP/9QSEgIaTQauZwSbGrXrh2NGDGCChYsKGs3tWnThnLmzPmlPxJjjDHGGGOpFo8uxxhjLFVTMpOio6NpxYoV5OnpSUSJdZL2799PNjY25OnpSTdu3KBFixZR27ZtjS4fFxdHO3bsoAULFtC8efMoT548X+PjMMYYY4wxlmpxJhNjjLFUTclGsrS0pJ49e9KAAQMoW7ZsFB8fT0OHDqXz589TlixZ6PXr13T79m0CQLrtK8ryWq2WGjduTDt27KA8efJQfHy8qug3Y4wxxhhjLGkcZGKMMfZdiI+PJyIiLy8v6tGjB5mbm9OpU6dow4YNsuj31q1bSQghA0tJrcvMzIyLfjPGGGOMMfYeuLscY4yx705kZCRNmzaNJk6cSJaWlmRubk7v3r2j+Ph4OnToEFWtWpUSEhI4iMQYY4wxxtgnxHfXjDHGvjv29vY0fvx4atWqFZmbm9Pr16/J3NyciIh27dpFRMQBJsYYY4wxxj4xvsNmjDH23VG6zk2aNIk6d+5MRERRUVHk7OxMjRo1+opbxhhjjDHG2PeLu8sxxhj7rj19+pSGDx9OOXPmJG9v76+9OYwxxhhjjH23OMjEGGPsuwdAFvuOi4sjrVb7lbeIMcYYY4yx7w8HmRhjjKUJyuUuuZHlGGOMMcYYYx+Gm3IZY4ylCRxcYowxxhhj7PPiwt+MMcYYY4wxxhhj7KNxkIkxxhhjjDHGGGOMfTQOMjHGGGOMMcYYY4yxj8ZBJsYYY4wxxhhjjDH20TjIxBhjjDHGGGOMMcY+GgeZGGOMMcYYY4wxxthH4yATY4wxxhhjjDHGGPtoHGRijDHGGGOMMcYYYx+Ng0yMMcYYY4wxxhhj7KNxkIkxxhhjjDHGGGOMfTQOMjHGGGOMMcYYY4yxj8ZBJsYYY4wxxhhjjDH20TjIxBhjjDHGGGOMMcY+GgeZGGOMMcYYY4wxxthH4yATY4wxxhhjjDHGGPtoHGRijDHGGGOMMcYYYx+Ng0yMMcYYY9+plStXkru7O6VPn540Gg0JIahkyZJfe7O+Wd7e3iSEICHE194UxhhjLFXiIBNjjDHGvikHDx6UD/q6f1qtljJkyEB58uQhd3d3+vXXX2nTpk0UExPztTf5mzR06FDq2LEjHTlyhMLDwwnAey3v5uZGQghycnJKdtlSpUrJ/TRmzJgk5z106JCcd9iwYe+1TYwxxhj7tnGQiTHGGGOpQnx8PL18+ZLu3r1LR44coVmzZlHLli3J2dmZJkyYQHFxcV97E78ZDx48oJkzZxIRUYUKFWj79u104cIFunTpEm3atClF66hatSoREb148YKuXLlicr6IiAi6ePGi/P8jR44kuV7d6e7u7inaFsYYY4ylDtqvvQGMMcYYY6b07t2b+vTpI///9evX9PLlS7p48SLt37+f9u3bR0+fPqXRo0fTtm3baPv27ZQpU6avuMXfhgMHDlB8fDwRES1evJjc3Nzeex3u7u60cOFCIkoMDJlax7FjxyghIYHMzMwoPj6eTp48SbGxsWRubm50fiXIpNFoqEqVKu+9XYwxxhj7dnEmE2OMMca+WZkzZ6aiRYvKvwoVKlC9evVo2LBhtGfPHgoKCqJSpUoREdGpU6eoWbNm3H2OiEJDQ+W/CxYs+EHr0M0yOnz4sMn5lGn16tUjW1tbevfuHZ0+fdrovPHx8XT8+HEiIipevDg5ODh80LYxxhhj7NvEQSbGGGOMpVpFihShwMBAGWgKDAykefPmfeWt+vqio6Plv01lFCXH2dmZcufOTURJd4FTplWvXp3Kly+f5Pznz5+nV69eERF3lWOMMca+RxxkYowxxliqZm1tTStXrpQjgk2fPp1iY2MN5nv58iUtW7aMOnToQEWKFCFbW1uysLCgrFmzUp06dWjRokUms6AGDRpEQggyMzNTZQmZ8sMPP5AQgooUKfLBn+vu3bv066+/kpubG9nZ2ZGNjQ0VKFCAevXqRZcuXTK6TO7cuUkIQePGjZOv6RdQv3v3boq3QQkEhYSEGF0uKipKZi1VrVpVdn8zFWRKST2mAwcOUKdOnShv3rxkY2ND9vb2VKxYMRoyZAg9fPgwRdv9KdZhyvnz5ylLliwkhKBs2bKp6lExxhhjaR4YY4wxxr4hBw4cABGBiDB27NgUL1e7dm25XGBgoMH0XLlyyemm/kqVKoWwsDCDZS9fviznmTx5cpLbceHCBTnvtGnTUrz9ulasWAFLS0uT22lmZoZJkyZ90Ge8c+dOirdj8eLFcrkVK1YYTD948CCICDY2NoiNjcXevXtBRHB0dER8fLzB/M2bN5fre/LkiWrau3fv0LZt2yS3PV26dNi6davJ7f3YdYwdO1bOZ8zhw4fh4OAAIkLu3LkRHByc1NfHGGOMpTmcycQYY4yx70KtWrXkv41l0sTHx1P58uVp/PjxtH37djp9+jQFBgbSqlWrqG7dukREdO7cOWrbtq3BskWKFKGKFSsSEdHy5cuT3I5ly5YREZFWq6Wff/75vT+Hv78/de7cmaKjo8nW1pbGjh1LR44coePHj9OMGTMoY8aMFB8fT15eXvTHH3+olt2zZw9dunSJevfuLV+7dOmS6i9Hjhwp3hbdbCNj36nyWvny5Umr1VKFChXIzMyMwsPDjWZbHT16lIiIChUqpCrQDoBatmxJa9euJSKiRo0a0cqVKykwMJCOHz9Os2fPJhcXF3rz5g21bNmSzpw5Y7DuT7GOpPj7+1OdOnUoIiKC3NzcKDAwkPLly/de62CMMca+e187ysUYY4wxputDM5n27dsnl+vatavB9Bs3biS5/NKlS+Xy+/btM5i+ZMmSJDOlACAmJgYZM2YEEaFJkyYp3nbd5bNnzw4igq2tLc6dO2cwz927d5EtWzaZQfT06VODeZLLyHkfWbNmBRHB1dXVYJqSPTZmzBj52g8//AAigq+vr2rea9euyW3q2bOnatqiRYtARDA3N8fOnTuNbseLFy/g5uYGIkLlypUNpn+KdZj63lavXg2tVgsiQrly5fD8+XOj62eMMcbSOs5kYowxxth3wcnJSf775cuXBtMLFCiQ5PJdunShkiVLEhHR5s2bDaa3adOG7OzsiOi/bCV927Zto2fPnhERUdeuXVOy2Sr//POPrBk0atQouT26cuXKRdOmTSMiordv35rclk+latWqRER0/fp1evLkiXxdd6Q4pRaT7r/1M59M1WMCQFOmTCEiov79+8usMn3p06eXnzswMJBu3rz5Sddhyvz586lDhw4UFxdHNWvWpP3791OGDBmSXY4xxhhLizjIxBhjjLHvgq2trfy3MoKZKQDo0aNHdOPGDQoKCpJ/SleyCxcuGCyTLl062ZVu/fr19PbtW4N5lIBP1qxZqX79+u/9Gfbt20dEicW6kwpStWrVihwcHFTLfC6musydO3eOXr16RWZmZrIrIdH7B5muXLlCt27dIiKili1bpnhblADXp1qHMRMmTKC+ffsSAGrWrBn5+/urjjPGGGOMqXGQiTHGGGPfBd3Akr29vdF5/P39qWHDhuTg4EDZsmUjV1dXKlasmPzz9/cnIpLZSPq6d+9ORESRkZG0adMm1bRHjx7Rrl27iIjo559/Jq1W+96fISgoiIiI8uTJo6pZpM/CwoJKlSqlWuZzUTKZiNSBIuXfJUuWVAVelPnDwsIoODjYYP5cuXJRzpw55eu6tZEqVqxoMBqe7p/u+zx69OiTrkPfr7/+SqNHjyaixCy3DRs2kKWlpcn5GWOMMcZBJsYYY4x9J3QDQ/rdmQBQ9+7dqWHDhuTv759sptO7d++Mvl6uXDkqVqwYERl2mfvzzz8pLi6OiD6sqxwR0YsXL4iIKHPmzMnOmzVrVtUyn0uxYsXI0dGRiIwHmXS7yhERZcmShfLnz6+aJzQ0lO7cuUNE6kwiIlJ1wXsfuplkn2Id+mbNmkVEREWLFqXFixeTmZnZB70HY4wxlpa8fxMbY4wxxtg36Ny5c/Lfrq6uqmlLly6lJUuWEFFi5s3AgQOpfPnylCNHDrKxsZEBhI4dO9LKlSsJgMn36d69Ow0YMIAOHjxId+/epdy5cxPRf0GnihUrUqFChT7qswghPmr5T0mj0VCVKlVo+/btdOHCBYqMjCR7e3s5Upx+kEl5LTg4mA4fPkxdunQx2VWOKLG2k2Lbtm3y+0yObiDuU6xDX4sWLWjTpk0UFBREAwYMIF9f3xStkzHGGEvLOMjEGGOMse/C3r175b/1Ax9+fn5ERJQ/f346duwYWVtbG11HSrKCOnToQEOHDqXo6Ghavnw5eXt704kTJ+jatWtE9OFZTET/ZWA9fvw42XmVrl5fogi1u7s7bd++neLj4+nYsWOUK1cuevr0KRGpu9MpqlSpQsuXL5fBpcOHD6vWpUu3YLujoyMVLVr0vbfvU6xD319//UWtW7emzZs309y5c0mr1ZKPj89Hr5cxxhj7nnF3OcYYY4ylekFBQbR//34iIsqZMyeVKVNGNf3y5ctERNS4cWOTASYAdPbs2WTfK0OGDNS8eXMiIlqxYgUBoKVLlxJRYnHwNm3afPDnUIIjd+7ckUEcY2JjY2Xm1qcIqCRHvy6TEjzKnz8/ZcmSxWB+Jch369YtCgsLk/NnzZqVChYsqJpXqS1FlDji24f4FOvQZ25uTuvWraOGDRsSUWL3uSFDhnySdTPGGGPfKw4yMcYYYyxVe/fuHXXs2FF2cRs8eLBB0W2lVtKbN29MrmfLli0UFhaWovdUCoDfvXuX/P39ad26dUSUOLKZnZ3de38GRa1atYgoMeClX/NJ18aNGykiIkK1zOf0ww8/kI2NDRElZiUpmUnGusoRJXZXVAqXb968WQb5jGU9lS5dmpydnYmIaNGiRRQVFfXe2/cp1mGMhYUFbdq0SY4UOH36dBo+fPgnWTdjjDH2PeIgE2OMMcZSrStXrlCVKlVkVk+1atWod+/eBvMVKFCAiBLr9RjrEnfr1i3q27dvit/3xx9/pHz58hERUY8ePSgyMpKIPq6rHBFR06ZNKXv27ERENHHiRLp06ZLBPA8ePKDBgwcTEZGNjQ116dLlo94zJczNzalixYpERHT69Gk6cOAAERkPGikqV65MRImBGSUAqN9Vjiix5pOXlxcREd2+fZs6duxI0dHRJtcbGRlJc+fO/eTrMMXCwoL+/vtvqlOnDhERTZkyhUaNGpWiZRljjLG0hoNMjDHGGPtmPXnyhIKCguTfyZMnadeuXTR16lSqU6cOFS1aVHZxq1ChAm3cuJHMzc0N1tOxY0ciInr48CFVrFiRli5dSqdOnaLDhw+Tt7c3/fDDD/TixQsqXbp0irZLCCEDSkptpPz58xsNorwPCwsLWrRoEQkhKDIykipXrkzjx4+nY8eO0cmTJ8nHx4fKlClDDx8+JKLEAE7GjBk/6j1TSgkoRUdHy/c3lcmkO+327dvyNVPfj6enJzVr1oyIiDZs2EBubm40bdo0OnToEJ0/f54OHz5MixYtovbt21P27NnJ29v7s6zDFEtLS9q8eTN5eHgQUWIAcOzYsSlenjHGGEszwBhjjDH2DTlw4ACIKMV/mTJlwsSJExEbG2tynTExMahdu7bJdVhbW2P9+vXo1KkTiAi5cuVKdjtDQ0NhZmYm1zFx4sRP9h0sX74clpaWJrfXzMwMkyZNMrn82LFj5byfSkBAgGobMmfOnOT8J06cUM2fPn16JCQkmJw/JiYGvXv3hhAi2X2eJ0+ez7KO5L63t2/fokaNGnKe8ePHJ/kdMMYYY2kNZzIxxhhjLFXQaDTk4OBALi4uVLVqVRo4cCBt2rSJQkJCyMvLy6AOky5zc3Py9/enOXPmUJkyZcjGxoasra0pf/785OnpSWfPnqVWrVq91/Zkz56datasSUREZmZm1KlTp4/6fLo6depE165dowEDBlDhwoUpXbp0ZG1tTfny5aMePXrQuXPnaMSIEZ/s/VKiQoUKZGFhIf9f6Q5nSunSpWUdJ6LEzCYhhMn5zc3Naf78+XThwgX65ZdfqFixYuTg4EBmZmbk4OBAJUuWpG7dutHGjRvp6tWrn20dSbG2tqZt27ZRtWrViIho9OjRNHny5PdeD2OMMfa9EsD/d5JnjDHGGGMplpCQQLly5aKQkBCqV68e7dix42tvEmOMMcbYV8WZTIwxxhhjH2Dv3r0UEhJCRETdunX7ylvDGGOMMfb1cSYTY4wxxtgHqFGjBh04cICyZctG9+/fT7K7HmOMMcZYWsB3Q4wxxhhjKfDq1St6/PgxRUZG0tKlS+nAgQNERDRkyBAOMDHGGGOMEWcyMcYYY4ylyPLly6lLly6q10qVKkUnT54kc3Pzr7RVjDHGGGPfDq7JxBhjjDH2HjQaDeXKlYv69etHe/fu5QATY4wxxtj/40wmxhhjjDHGGGOMMfbROJOJMcYYY4wxxhhjjH00DjIxxhhjjDHGGGOMsY/GQSbGGGOMMcYYY4wx9tE4yMQYY4wxxhhjjDHGPhoHmRhjjDHGGGOMMcbYR+MgE2OMMcYYY4wxxhj7aBxkYowxxhhjjDHGGGMfjYNMjDHGGGOMMcYYY+yjcZCJMcYYY4wxxhhjjH00DjIxxhhjjDHGGGOMsY/GQSbGGGOMMcYYY4wx9tE4yMQYY4wxxhhjjDHGPhoHmRhjjDHGGGOMMcbYR+MgE2OMMcYYY4wxxhj7aBxkYowxxhhjjDHGGGMfjYNMjDHGGGOMMcYYY+yjcZCJMcYYY4wxxhhjjH00DjIxxhhjjDHGGGOMsY/2fwyXpy2UnDfUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "days_of_week = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']\n", "\n", "probabilities = []\n", "\n", "# Iterate over the days of the week\n", "for day in days_of_week:\n", " # Select all patients that came in on the specific day of the week\n", " patients_on_day = data[(data['Day-of-Week'] == day)]\n", "\n", " # Of the selected patients, further select patients with intoxication\n", " patient_intoxicated_on_day = patients_on_day[patients_on_day['Condition'] == 'Intoxication']\n", "\n", " # Compute the portion of patients with intoxication on this day\n", " portion_intoxicated_on_day = float(len(patient_intoxicated_on_day)) / float(len(patients_on_day))\n", "\n", " probabilities.append(portion_intoxicated_on_day)\n", "\n", "# Plot!\n", "plt.bar(days_of_week, probabilities, label='Conditional Predictor')\n", "plt.axhline(naive_probability_of_intoxication, color='red', label='Naive Predictor')\n", "\n", "# Add axis labels and titles\n", "plt.xticks(rotation=30)\n", "plt.xlabel('Day of Week')\n", "plt.ylabel('Probability of Intoxication')\n", "plt.title('Conditional Probability of Intoxication Given Day at the IHH ER')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "4e211da2-3a2e-40d6-b554-b88c1f8cf714", "metadata": {}, "source": [ "As you can see, the probability of a patient arriving with intoxication changes *significantly* from the naive predictor (above) if we consider the day of the week. Specifically, the above plot shows us that our naive predictor\n", "1. significantly *over-estimates* the probability of intoxication on weekdays, and\n", "2. significantly *under-estimates* the probability of intoxication on weekends.\n", "\n", "Using a conditional distribution, we can leverage additional information (day of the week) to improve our prediction!" ] }, { "cell_type": "markdown", "id": "9800ff5a-202d-4971-8a7d-aac8912565ea", "metadata": {}, "source": [ "**Definition and Notation:** A conditional probability is a probability distribution that changes as a function of another random variable. \n", "\n", "> Continuing with the above example, \n", "> * Let $D$ denote the day of the week.\n", "> * Let $I$ denote whether the patient arrives with intoxication.\n", "> \n", "> Here, $p_I(\\cdot)$ describes the (non-conditional) probability that a patient arrives with intoxication. It represents our *naive*, inaccurate prediction. In contrast, $p_{I | D}(\\cdot | d)$ describes the *conditional* probability of \"intoxication given the day\"---the probability of intoxication changes from weekdays to weekends. In this notation, what comes on the right side of the vertical line is the \"condition\" (here, $D = d$)." ] }, { "cell_type": "markdown", "id": "cc146ed7-d09b-44b2-aebb-15e0d9ab2cc9", "metadata": {}, "source": [ "**Sample Space or Support:** Since a discrete conditional distribution is still a discrete distribution, all notation/terminology from discrete probability still holds. \n", "\n", "> For our running example, the sample space is that of variable to the left of the line, $I$. That is, the sample space of $p_{I | D}(\\cdot | d)$ is $I \\in \\{ 0, 1 \\}$ (with 1 means intoxicated and 0 means not intoxicated). " ] }, { "cell_type": "markdown", "id": "9ef3cc8e-8bca-41ea-a913-90561854b110", "metadata": {}, "source": [ "**Probability Mass Function (PMF):** The PMF is, again, that of the variable to the left of the vertical line. What makes a conditional probability different from a non-conditional distribution, however, is that the parameter of the distribution is now a *function of the condition*.\n", "> In our example, the PMF is that of a Bernoulli random variable (since $I$ can only take on two values). Since it's a *conditional* distribution, it's parameter depends on the condition (the day $D = d$). We can write this as follows:\n", "> \\begin{align}\n", "p_{I | D}(\\cdot | d) = \\mathrm{Ber}(\\rho(d)),\n", "\\end{align}\n", "> where\n", "> \\begin{align}\n", "p_{I | D}(i | d) = \\underbrace{\\rho(d)^{i} \\cdot \\left(1 - \\rho(d) \\right)^{1 - i}}_{\\text{Bernoulli PMF (see Wikipedia)}},\n", "\\end{align}\n", "> and where\n", "> \\begin{align} \\rho(d) &= \\begin{cases}\n", "0.1 & \\text{if $d$ is weekday} \\\\\n", "0.4 & \\text{if $d$ is weekend} \n", "\\end{cases} \n", "\\end{align}\n", "> In a sense, a conditional probability is the \"if/else-expression of probability.\"" ] }, { "cell_type": "markdown", "id": "eb5b992a-2b37-4b51-8c44-797eb1f1487e", "metadata": {}, "source": [ "**Independent, Identically Distributed (i.i.d):** Just as before, a variable can be sampled i.i.d from a distribution.\n", "\n", "> Given $D = d$, we write that $I$ is sampled i.i.d from the conditional as follows: $I | d \\sim p_{I | D}(\\cdot | d)$. This means that, given the day (e.g. $d = \\mathrm{Monday}$), observing one patient with intoxication tells us nothing about the probability of observing another patient with intoxication. Note that without conditioning on the day, this is not true: observing many patients with intoxication could tell us that the current day is on a weekend, which means the probability of intoxication is higher overall." ] }, { "cell_type": "markdown", "id": "222bc7b2-8e5b-4ea5-9e0e-9ba4ba84153b", "metadata": {}, "source": [ "**Summary of Notation:**\n", "* Let $R$ and $C$ denote two RVs. \n", "* $R | c$ is then an RV describing \"$R$ given $C = c$\".\n", "* $p_{R | C}(r | c)$ is the evaluation of the conditional PMF at $r$: i.e. given that $C = c$, what's the probability that $R = r$?\n", "* $p_{R | C}(\\cdot | c)$ is the conditional PMF of $R | c$. The dot represents the fact that we're representing the *whole* distribution---we haven't yet ask about the probability of $R = r$ as above.\n", "* $R | c \\sim p_{R | C}(\\cdot | c)$ denotes that $R | c$ is sampled i.i.d. from $p_{R | C}(\\cdot | c)$" ] }, { "cell_type": "markdown", "id": "116a650c-51d2-4e4a-8b4b-f70662b015a7", "metadata": {}, "source": [ "```{admonition} Exercise: Fit conditional distributions by hand\n", "Let us define the following RVs:\n", "* $D$: Day-of-Week\t\n", "* $C$: Condition\t\n", "* $H$: Hospitalized\t\n", "* $A$: Antibiotics\n", "* $K$: Knots\n", "\n", "Our goal is to learn the distributions of the following conditional RVs:\n", "1. $C | D$\n", "2. $H | C$\n", "3. $K | C$\n", "4. $A | C, H$ (here, we condition on *two* RVs)\n", "\n", "Each one of these conditional distributions represents a *predictive model*. For example, (1) says \"given that the day is $D = d$, predict how likely is a patient to arrive with condition $C =c$\"? \n", "\n", "**Part 1:** By exploring the data (as we did in the above example for \"intoxication given day\"), empirically estimate each conditional distribution above. When we say, \"estimate the conditional distribution,\" we mean you estimate the distribution for every condition; for example, for $C | D$, we want you to empirically estimate $C | D$ for *every* $D = d$. Use the notation we introduced to write your answer. Don't forget to show your work with all the plots you generate!\n", "\n", "**Part 2:** Compare each conditional distribution with its corresponding non-conditional version (these are called *marginals*) from before. What differences do you notice? How can the differences mislead the IHH ER?\n", "```" ] }, { "cell_type": "markdown", "id": "829e2060-8c62-4194-a978-cfe77e27caad", "metadata": {}, "source": [ "## Getting Familiar with Distributions in `NumPyro`\n", "\n", "Now that we've learned some conditional distributions by hand, we'll introduce the framework we'll use to implement our ML models: `NumPyro`. And specifically, we'll introduce one of the main building blocks in `NumPyro`: distributions.\n", "\n", "**What is `NumPyro`?** `NumPyro` is a \"Probabilistic Programming Language\" based in `Jax`. It provides an interface for (nearly) direct translation of the stats/math we wrote above into code that we can use to fit to data, make predictions, and more. This will allow us to focus on the conceptual ideas behind probabilistic ML. \n", "\n", "**Instantiating Distributions in `NumPyro`.** `NumPyro` comes with many distributions already implemented. For a complete list of all available discrete distributions, check out the [this part of the documentation](https://num.pyro.ai/en/stable/distributions.html#discrete-distributions). So why use `NumPyro` instead of implementing the distributions on our own? It's easy to write subtle bugs that are hard to catch when implementing mathematical formulas in code. Also, using `NumPyro`'s distributions will help us highlight the overall *logic* of the code, instead of getting bogged down by the mathematical details. \n", "\n", "Distributions in `NumPyro` have several notable properties and methods we will rely on. Let's explore them together. First, we import the necessary components of `NumPyro`:" ] }, { "cell_type": "code", "execution_count": 5, "id": "ca957c4a-a908-48b7-8061-c504577151e5", "metadata": {}, "outputs": [], "source": [ "import jax.numpy as jnp\n", "import jax.random as jrandom\n", "import numpyro\n", "import numpyro.distributions as D" ] }, { "cell_type": "markdown", "id": "6e74c5f2-d631-48d9-993a-96a3266ab676", "metadata": {}, "source": [ "Now, let's instantiate the simplest discrete distribution we know, the Bernoulli distribution, to describe the naive predictor from earlier.\n", "\\begin{align}\n", "p_I(i) &= \\mathrm{Ber}(\\rho) = \\rho^i \\cdot (1 - \\rho)^{1 - i}\n", "\\end{align}\n", "Recall that a Bernoulli distribution takes in just one parameter, $\\rho \\in [0, 1]$, which determines the probability of sampling $I = 1$ vs. $I = 0$ (or Yes vs. No). Here let's instantiate the Bernoulli distribution with $\\rho = 0.2$." ] }, { "cell_type": "code", "execution_count": 6, "id": "f5f25a53-7f1b-41c9-97e2-460b30f4b8f2", "metadata": {}, "outputs": [], "source": [ "rho = jnp.array(0.2)\n", "p_I = D.Bernoulli(rho)" ] }, { "cell_type": "markdown", "id": "5318648b-3b9d-42cd-ae95-bf0b597df45b", "metadata": {}, "source": [ "That's it! \n", "\n", "**Evaluating the PMF of `NumPyro` Distributions.** Now, if we want to evaluate the PMF, $p_I(i)$, we can use `log_prob` method as follows (note that this returns the *log* of the PMF, so we'll have to exponentiate the result):" ] }, { "cell_type": "code", "execution_count": 7, "id": "34a2893c-1049-4f88-99c9-baa703e43086", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Probability of sampling a 1: 0.2\n", "Probability of sampling a 0: 0.8\n" ] } ], "source": [ "log_p_I_eq_1 = p_I.log_prob(jnp.array(1.0))\n", "print('Probability of sampling a 1:', jnp.exp(log_p_I_eq_1))\n", "\n", "log_p_I_eq_0 = p_I.log_prob(jnp.array(0.0))\n", "print('Probability of sampling a 0:', jnp.exp(log_p_I_eq_0))" ] }, { "cell_type": "markdown", "id": "c8d7f0ef-00af-4ec2-8bd5-3f1929f1553c", "metadata": {}, "source": [ "**Sampling from `NumPyro` Distributions.** `NumPyro` distributions all have a `sample` method which can be used to draw samples. It takes in two arguments:\n", "1. A random number generator \"key,\" which controls the randomness of the sample.\n", "2. A shape, describing the number of i.i.d samples you want to draw.\n", "\n", "Let's give it a go:" ] }, { "cell_type": "code", "execution_count": 8, "id": "e020379e-51ac-49b8-ac98-a532c9b1e53a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First batch drawn with key1: [0 0 1 0 0 0 0 0 0 0 1 0 0 0 0]\n", "Second batch drawn with key1: [0 0 1 0 0 0 0 0 0 0 1 0 0 0 0]\n", "Third batch drawn with key2: [0 1 1 0 0 0 0 0 0 1 0 1 0 1 1]\n" ] } ], "source": [ "shape = (15,) # Shape of i.i.d samples we wish to draw \n", "\n", "key1 = jrandom.PRNGKey(seed=0) # Create a random number generator key\n", "print('First batch drawn with key1: ', p_I.sample(key1, shape))\n", "print('Second batch drawn with key1:', p_I.sample(key1, shape))\n", "\n", "key2 = jrandom.PRNGKey(seed=1) # Create a random number generator key\n", "print('Third batch drawn with key2: ', p_I.sample(key2, shape))" ] }, { "cell_type": "markdown", "id": "f99df4ee-a979-4192-8b9a-adff43fef033", "metadata": {}, "source": [ "Notice in the above code, when using the same key twice (or the same `seed`), we get the *exact same batch of samples*. This is both a blessing and a curse. It's a blessing because this allows us to precisely control the randomness of our ML code. This will prove crucial for debugging later on. However, it can also be a curse if we accidentally use the same key in a place where we need two different sources of randomness.\n", "\n", "**Best Practice: How to Manage Your Keys.** We will follow two rules of thumb:\n", "1. Make only ONE CALL to `jrandom.PRNGKey` in your entire code.\n", "2. Never use the same key twice.\n", "\n", "But if we're restricting ourselves to only creating one key with `jrandom.PRNGKey`, how can we possibly call `sample` multiple times with different keys? `Jax` allows us to take a random key and split it into multiple different keys, each of which can be used for different purposes. This means we can create ONE KEY to control the randomness of our entire code. We can then split this key into multiple keys as needed. Here's how we can do this:" ] }, { "cell_type": "code", "execution_count": 9, "id": "70033186-6baf-4390-9cb2-18e182f54d0a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First batch drawn with key_first: [0 0 0 0 1 0 1 1 0 0 0 0 0 0 0]\n", "Second batch drawn with key_second: [0 0 1 0 0 0 0 0 0 0 0 0 1 0 0]\n", "Third batch drawn with key_third: [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]\n" ] } ], "source": [ "# Create ONE KEY to be used by your ENTIRE CODE\n", "key = jrandom.PRNGKey(seed=0)\n", "\n", "# Whenever you need to use the key for multiple purposes, split it into parts:\n", "key_first, key_second, key_third = jrandom.split(key, 3) \n", "\n", "# Use a different key for each need\n", "print('First batch drawn with key_first: ', p_I.sample(key_first, shape))\n", "print('Second batch drawn with key_second:', p_I.sample(key_second, shape))\n", "print('Third batch drawn with key_third: ', p_I.sample(key_third, shape))" ] }, { "cell_type": "markdown", "id": "2914c1e6-a93a-4c64-9309-a23d8cb62353", "metadata": {}, "source": [ "**Conditional Distributions in `NumPyro`:** Now that we've implemented the naive predictor, let's implement our better predictor, $p_{I | D}(i | d)$. Recall the only difference between this predictor and the naive predictor is that the parameter of the distribution, $\\rho$, now depends on the day, $d$." ] }, { "cell_type": "code", "execution_count": 10, "id": "925708c9-e4c5-4651-9a6e-242bb7c12ac9", "metadata": {}, "outputs": [], "source": [ "def p_intoxication_given_day(day):\n", " '''\n", " Assume day is an integer from 0 to 6 (Monday to Sunday)\n", " ''' \n", "\n", " rho_given_d = jnp.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.4, 0.4])\n", " \n", " p_I_given_d = D.Bernoulli(rho_given_d[day])\n", "\n", " return p_I_given_d\n", "\n", "# Example uses\n", "p_I_given_Monday = p_intoxication_given_day(jnp.array(0))\n", "p_I_given_Saturday = p_intoxication_given_day(jnp.array(5))" ] }, { "cell_type": "markdown", "id": "0302a8cd-331f-4c0a-8706-6684b87dd8be", "metadata": {}, "source": [ "In the above, `p_I_given_Monday` and `p_I_given_Saturday` are just `NumPyro` Bernoulli distributions, so you can use their `log_prob` and `sample` functions just like before." ] }, { "cell_type": "markdown", "id": "6cb03f3a-2531-43fc-92e9-6af8d0ba4666", "metadata": {}, "source": [ "```{admonition} Exercise: Implement conditional distributions \n", "\n", "**Part 1:** Implement each one of the conditional distributions from the previous exercise in `NumPyro`, following the example of `p_intoxication_given_day` above. \n", "\n", "Note: `NumPyro` discrete distributions only work with integers, not strings. For example, instead of using $d = \\text{Monday}$, you should convert the days of the week into integers from 0 to 6 (Monday to Sunday), and instead use $d = 0$ for \"Monday\". We've created two helper functions to help you with this conversion: `convert_day_of_week_to_int` and `convert_condition_to_int`. You can use them as follows:\n", " * `convert_day_of_week_to_int(data['Day-of-Week'])`\n", " * `convert_condition_to_int(data['Condition'])`\n", "\n", "**Part 2:** Verify that your implementation is correct by sampling from each conditional distribution and eye-balling that the samples look correct. Be sure to follow the best practices above when using a random number generator key. \n", "```" ] }, { "cell_type": "code", "execution_count": null, "id": "adb71ab1-628a-415d-907c-db4f3faa6a8c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "1af262fc-e160-4fef-ae88-39235f400719", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }